TPTP Problem File: GRP579-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP579-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Group Theory (Abelian)
% Problem : Axiom for Abelian group theory, in double div and id, part 3
% Version : [McC93] (equality) axioms.
% English :
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v9.0.0, 0.09 v8.2.0, 0.12 v8.1.0, 0.15 v7.5.0, 0.17 v7.4.0, 0.22 v7.3.0, 0.21 v7.1.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.32 v5.4.0, 0.13 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.4.0, 0.12 v3.3.0, 0.07 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : A UEQ part of GRP102-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
double_divide(double_divide(A,double_divide(double_divide(double_divide(B,A),C),double_divide(B,identity))),double_divide(identity,identity)) = C ).
cnf(multiply,axiom,
multiply(A,B) = double_divide(double_divide(B,A),identity) ).
cnf(inverse,axiom,
inverse(A) = double_divide(A,identity) ).
cnf(identity,axiom,
identity = double_divide(A,inverse(A)) ).
cnf(prove_these_axioms_3,negated_conjecture,
multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ).
%--------------------------------------------------------------------------