TPTP Problem File: GRP560-1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : GRP560-1 : TPTP v9.0.0. Bugfixed v2.7.0.
% Domain   : Group Theory (Abelian)
% Problem  : Axiom for Abelian group theory, in division and inverse, part 4
% Version  : [McC93] (equality) axioms.
% English  :

% Refs     : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source   : [TPTP]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.14 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.17 v7.4.0, 0.26 v7.3.0, 0.21 v7.1.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.24 v6.2.0, 0.21 v6.1.0, 0.06 v6.0.0, 0.19 v5.5.0, 0.16 v5.4.0, 0.00 v5.2.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.00 v2.7.0
% Syntax   : Number of clauses     :    3 (   3 unt;   0 nHn;   1 RR)
%            Number of literals    :    3 (   3 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    1 (   0 usr;   0 prp; 2-2 aty)
%            Number of functors    :    5 (   5 usr;   2 con; 0-2 aty)
%            Number of variables   :    5 (   0 sgn)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments : A UEQ part of GRP097-1
% Bugfixes : v2.7.0 - Grounded conjecture
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
    divide(A,inverse(divide(divide(B,C),divide(A,C)))) = B ).

cnf(multiply,axiom,
    multiply(A,B) = divide(A,inverse(B)) ).

cnf(prove_these_axioms_4,negated_conjecture,
    multiply(a,b) != multiply(b,a) ).

%--------------------------------------------------------------------------