TPTP Problem File: GRP535-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP535-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Group Theory (Abelian)
% Problem : Axiom for Abelian group theory, in division, part 3
% Version : [McC93] (equality) axioms.
% English :
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.05 v8.2.0, 0.08 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.22 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.21 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.0.0, 0.00 v3.4.0, 0.12 v3.3.0, 0.00 v2.6.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : A UEQ part of GRP091-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
divide(divide(A,divide(divide(A,B),C)),B) = C ).
cnf(multiply,axiom,
multiply(A,B) = divide(A,divide(divide(C,C),B)) ).
cnf(inverse,axiom,
inverse(A) = divide(divide(B,B),A) ).
cnf(identity,axiom,
identity = divide(A,A) ).
cnf(prove_these_axioms_3,negated_conjecture,
multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ).
%--------------------------------------------------------------------------