TPTP Problem File: GRP509-1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : GRP509-1 : TPTP v9.0.0. Released v2.6.0.
% Domain   : Group Theory (Abelian)
% Problem  : Axiom for Abelian group theory, in product and inverse, part 1
% Version  : [McC93] (equality) axioms.
% English  :

% Refs     : [LW92]  Lusk & Wos (1992), Benchmark Problems in Which Equalit
%          : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source   : [TPTP]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.14 v8.2.0, 0.08 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.22 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.05 v6.4.0, 0.16 v6.3.0, 0.24 v6.2.0, 0.21 v6.1.0, 0.06 v6.0.0, 0.19 v5.5.0, 0.21 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.13 v5.0.0, 0.14 v4.1.0, 0.18 v4.0.1, 0.14 v4.0.0, 0.15 v3.7.0, 0.11 v3.4.0, 0.00 v2.6.0
% Syntax   : Number of clauses     :    2 (   2 unt;   0 nHn;   1 RR)
%            Number of literals    :    2 (   2 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    1 (   0 usr;   0 prp; 2-2 aty)
%            Number of functors    :    4 (   4 usr;   2 con; 0-2 aty)
%            Number of variables   :    3 (   0 sgn)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments : A UEQ part of GRP085-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
    multiply(multiply(multiply(A,B),C),inverse(multiply(A,C))) = B ).

cnf(prove_these_axioms_1,negated_conjecture,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1) ).

%--------------------------------------------------------------------------