TPTP Problem File: GRP469-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP469-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Group Theory
% Problem : Axiom for group theory, in division and inverse, part 1
% Version : [McC93] (equality) axioms.
% English :
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.33 v8.1.0, 0.30 v7.5.0, 0.38 v7.4.0, 0.43 v7.3.0, 0.37 v7.1.0, 0.28 v7.0.0, 0.32 v6.4.0, 0.37 v6.3.0, 0.35 v6.2.0, 0.43 v6.1.0, 0.56 v6.0.0, 0.57 v5.5.0, 0.63 v5.4.0, 0.53 v5.3.0, 0.50 v5.1.0, 0.47 v5.0.0, 0.43 v4.1.0, 0.36 v4.0.0, 0.31 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.2.0, 0.21 v3.1.0, 0.11 v2.7.0, 0.18 v2.6.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : A UEQ part of GRP071-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
divide(inverse(divide(A,divide(B,divide(C,D)))),divide(divide(D,C),A)) = B ).
cnf(multiply,axiom,
multiply(A,B) = divide(A,inverse(B)) ).
cnf(prove_these_axioms_1,negated_conjecture,
multiply(inverse(a1),a1) != multiply(inverse(b1),b1) ).
%--------------------------------------------------------------------------