TPTP Problem File: GRP435-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP435-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Group Theory
% Problem : Axiom for group theory, in product & inverse, part 3
% Version : [McC93] (equality) axioms.
% English :
% Refs : [McC93] McCune (1993), Single Axioms for Groups and Abelian Gr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.18 v8.2.0, 0.21 v8.1.0, 0.20 v7.5.0, 0.21 v7.4.0, 0.30 v7.3.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.21 v6.4.0, 0.26 v6.3.0, 0.18 v6.2.0, 0.14 v6.1.0, 0.38 v6.0.0, 0.52 v5.5.0, 0.47 v5.4.0, 0.33 v5.3.0, 0.25 v5.2.0, 0.29 v5.1.0, 0.27 v5.0.0, 0.14 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.4.0, 0.12 v3.3.0, 0.07 v3.2.0, 0.00 v2.6.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : A UEQ part of GRP059-1
%--------------------------------------------------------------------------
cnf(single_axiom,axiom,
inverse(multiply(multiply(multiply(inverse(multiply(multiply(A,B),C)),A),B),multiply(D,inverse(D)))) = C ).
cnf(prove_these_axioms_3,negated_conjecture,
multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ).
%--------------------------------------------------------------------------