TPTP Problem File: GRP203-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP203-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Group Theory (Loops)
% Problem : Left identity, left inverse, Moufang-3 => Moufang-2
% Version : [MP96] (equality) axioms : Especial.
% English :
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : MFL-7 [MP96]
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.38 v8.1.0, 0.45 v7.5.0, 0.46 v7.4.0, 0.52 v7.3.0, 0.47 v7.1.0, 0.39 v7.0.0, 0.32 v6.4.0, 0.37 v6.3.0, 0.35 v6.2.0, 0.36 v6.1.0, 0.44 v6.0.0, 0.57 v5.5.0, 0.47 v5.4.0, 0.33 v5.3.0, 0.25 v5.2.0, 0.29 v5.1.0, 0.27 v5.0.0, 0.21 v4.1.0, 0.27 v4.0.1, 0.29 v4.0.0, 0.23 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.14 v3.2.0, 0.21 v3.1.0, 0.11 v2.7.0, 0.18 v2.6.0, 0.00 v2.2.1
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Given left identity and left inverse, Moufang-2 and Moufang-3
% are equivalent, but Moufang-1 is weaker (see MFL-8).
%--------------------------------------------------------------------------
%----Left identity and left inverse:
cnf(left_identity,axiom,
multiply(identity,X) = X ).
cnf(left_inverse,axiom,
multiply(left_inverse(X),X) = identity ).
%----Moufang-3:
cnf(moufang3,axiom,
multiply(multiply(multiply(X,Y),X),Z) = multiply(X,multiply(Y,multiply(X,Z))) ).
%----Denial of Moufang-2:
cnf(prove_moufang2,negated_conjecture,
multiply(multiply(multiply(a,b),c),b) != multiply(a,multiply(b,multiply(c,b))) ).
%--------------------------------------------------------------------------