TPTP Problem File: GRP185-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP185-3 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Application of monotonicity and distributivity
% Version : [Fuc94] (equality) axioms.
% Theorem formulation : Using a dual definition of =<.
% English :
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.32 v8.2.0, 0.46 v8.1.0, 0.60 v7.5.0, 0.46 v7.4.0, 0.43 v7.3.0, 0.42 v7.1.0, 0.33 v7.0.0, 0.42 v6.4.0, 0.47 v6.3.0, 0.41 v6.2.0, 0.43 v6.1.0, 0.44 v6.0.0, 0.67 v5.5.0, 0.63 v5.4.0, 0.47 v5.3.0, 0.33 v5.2.0, 0.43 v5.1.0, 0.47 v5.0.0, 0.50 v4.1.0, 0.55 v4.0.1, 0.50 v4.0.0, 0.54 v3.7.0, 0.33 v3.4.0, 0.25 v3.3.0, 0.21 v3.1.0, 0.33 v2.7.0, 0.36 v2.6.0, 0.67 v2.5.0, 0.75 v2.4.0, 0.33 v2.2.1, 0.56 v2.2.0, 0.43 v2.1.0, 0.43 v2.0.0
% Syntax : Number of clauses : 16 ( 16 unt; 0 nHn; 1 RR)
% Number of literals : 16 ( 16 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 33 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a > b
% : This is a standardized version of the problem that appears in
% [Sch95].
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(prove_p22b,negated_conjecture,
greatest_lower_bound(least_upper_bound(multiply(a,b),identity),multiply(least_upper_bound(a,identity),least_upper_bound(b,identity))) != least_upper_bound(multiply(a,b),identity) ).
%--------------------------------------------------------------------------