TPTP Problem File: GRP181-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP181-3 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Distributivity of a lattice
% Version : [Fuc94] (equality) axioms : Augmented.
% English :
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.42 v8.1.0, 0.50 v7.5.0, 0.46 v7.4.0, 0.52 v7.3.0, 0.37 v7.1.0, 0.28 v7.0.0, 0.32 v6.4.0, 0.42 v6.3.0, 0.41 v6.2.0, 0.43 v6.1.0, 0.50 v6.0.0, 0.67 v5.5.0, 0.63 v5.4.0, 0.53 v5.3.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.50 v4.1.0, 0.36 v4.0.1, 0.43 v4.0.0, 0.38 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.43 v3.1.0, 0.44 v2.7.0, 0.45 v2.6.0, 0.17 v2.5.0, 0.50 v2.4.0, 0.00 v2.2.1, 0.56 v2.2.0, 0.57 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 20 ( 20 unt; 0 nHn; 3 RR)
% Number of literals : 20 ( 20 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 37 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a > b > c
% : ORDERING LPO greatest_lower_bound > least_upper_bound >
% inverse > product > identity > a > b > c
% : This is a standardized version of the problem that appears in
% [Sch95].
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(p12x_1,hypothesis,
greatest_lower_bound(a,c) = greatest_lower_bound(b,c) ).
cnf(p12x_2,hypothesis,
least_upper_bound(a,c) = least_upper_bound(b,c) ).
cnf(p12x_3,hypothesis,
inverse(greatest_lower_bound(X,Y)) = least_upper_bound(inverse(X),inverse(Y)) ).
cnf(p12x_4,hypothesis,
inverse(least_upper_bound(X,Y)) = greatest_lower_bound(inverse(X),inverse(Y)) ).
cnf(prove_p12x,negated_conjecture,
a != b ).
%--------------------------------------------------------------------------