TPTP Problem File: GRP178-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP178-1 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : A consequence of monotonicity
% Version : [Fuc94] (equality) axioms.
% English :
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [Sch95]
% Names : p09a [Sch95]
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.41 v8.2.0, 0.46 v8.1.0, 0.60 v7.5.0, 0.50 v7.4.0, 0.61 v7.3.0, 0.58 v7.1.0, 0.50 v7.0.0, 0.47 v6.4.0, 0.58 v6.3.0, 0.59 v6.2.0, 0.50 v6.1.0, 0.69 v6.0.0, 0.71 v5.5.0, 0.74 v5.4.0, 0.60 v5.3.0, 0.50 v5.2.0, 0.57 v5.1.0, 0.47 v5.0.0, 0.43 v4.1.0, 0.36 v4.0.1, 0.29 v4.0.0, 0.23 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.21 v3.2.0, 0.14 v3.1.0, 0.11 v2.7.0, 0.45 v2.6.0, 0.50 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1, 0.56 v2.2.0, 0.57 v2.1.0, 0.43 v2.0.0
% Syntax : Number of clauses : 20 ( 20 unt; 0 nHn; 5 RR)
% Number of literals : 20 ( 20 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 33 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > product > greatest_lower_bound >
% least_upper_bound > identity > a > b > c
% : ORDERING LPO greatest_lower_bound > least_upper_bound >
% inverse > product > identity > a > b > c
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(p09a_1,hypothesis,
least_upper_bound(identity,a) = a ).
cnf(p09a_2,hypothesis,
least_upper_bound(identity,b) = b ).
cnf(p09a_3,hypothesis,
least_upper_bound(identity,c) = c ).
cnf(p09a_4,hypothesis,
greatest_lower_bound(a,b) = identity ).
cnf(prove_p09a,negated_conjecture,
greatest_lower_bound(a,multiply(b,c)) != greatest_lower_bound(a,c) ).
%--------------------------------------------------------------------------