TPTP Problem File: GRP167-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP167-2 : TPTP v9.0.0. Bugfixed v1.2.1.
% Domain : Group Theory (Lattice Ordered)
% Problem : Product of positive and negative parts
% Version : [Fuc94] (equality) axioms : Augmented.
% English : Each element in a lattice ordered group can be stated as a
% product of it's positive and it's negative part.
% Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri
% : [Sch95] Schulz (1995), Explanation Based Learning for Distribu
% Source : [Sch95]
% Names : lat4 [Sch95]
% Status : Unsatisfiable
% Rating : 0.27 v8.2.0, 0.33 v8.1.0, 0.25 v7.4.0, 0.39 v7.3.0, 0.32 v7.1.0, 0.22 v7.0.0, 0.26 v6.4.0, 0.32 v6.3.0, 0.35 v6.2.0, 0.43 v6.1.0, 0.44 v6.0.0, 0.57 v5.5.0, 0.58 v5.4.0, 0.40 v5.3.0, 0.33 v5.2.0, 0.36 v5.1.0, 0.33 v5.0.0, 0.29 v4.1.0, 0.27 v4.0.1, 0.21 v4.0.0, 0.23 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.21 v3.1.0, 0.11 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.57 v2.1.0, 0.71 v2.0.0
% Syntax : Number of clauses : 23 ( 23 unt; 0 nHn; 2 RR)
% Number of literals : 23 ( 23 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 2 con; 0-2 aty)
% Number of variables : 44 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : ORDERING LPO inverse > greatest_lower_bound >
% least_upper_bound > product > negative_part > positive_part >
% identity > a
% Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed.
%--------------------------------------------------------------------------
%----Include equality group theory axioms
include('Axioms/GRP004-0.ax').
%----Include Lattice ordered group (equality) axioms
include('Axioms/GRP004-2.ax').
%--------------------------------------------------------------------------
cnf(lat4_1,axiom,
inverse(identity) = identity ).
cnf(lat4_2,axiom,
inverse(inverse(X)) = X ).
cnf(lat4_3,axiom,
inverse(multiply(X,Y)) = multiply(inverse(Y),inverse(X)) ).
cnf(lat4_4,axiom,
positive_part(X) = least_upper_bound(X,identity) ).
cnf(lat4_5,axiom,
negative_part(X) = greatest_lower_bound(X,identity) ).
cnf(lat4_6,axiom,
least_upper_bound(X,greatest_lower_bound(Y,Z)) = greatest_lower_bound(least_upper_bound(X,Y),least_upper_bound(X,Z)) ).
cnf(lat4_7,axiom,
greatest_lower_bound(X,least_upper_bound(Y,Z)) = least_upper_bound(greatest_lower_bound(X,Y),greatest_lower_bound(X,Z)) ).
cnf(prove_lat4,negated_conjecture,
a != multiply(positive_part(a),negative_part(a)) ).
%--------------------------------------------------------------------------