TPTP Problem File: GRP048-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP048-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Inverse substitution is dependent
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.45 v8.2.0, 0.42 v8.1.0, 0.35 v7.5.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 2 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 4 con; 0-4 aty)
% Number of variables : 27 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from GRP048-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(left_identity,axiom,
product(identity,X,X) = true ).
cnf(left_inverse,axiom,
product(inverse(X),X,identity) = true ).
cnf(total_function1,axiom,
product(X,Y,multiply(X,Y)) = true ).
cnf(total_function2,axiom,
ifeq(product(X,Y,W),true,ifeq(product(X,Y,Z),true,equalish(Z,W),true),true) = true ).
cnf(associativity1,axiom,
ifeq(product(U,Z,W),true,ifeq(product(Y,Z,V),true,ifeq(product(X,Y,U),true,product(X,V,W),true),true),true) = true ).
cnf(associativity2,axiom,
ifeq(product(Y,Z,V),true,ifeq(product(X,V,W),true,ifeq(product(X,Y,U),true,product(U,Z,W),true),true),true) = true ).
cnf(product_substitution3,axiom,
ifeq(equalish(X,Y),true,ifeq(product(W,Z,X),true,product(W,Z,Y),true),true) = true ).
cnf(a_equals_b,hypothesis,
equalish(a,b) = true ).
cnf(prove_inverse_substitution,negated_conjecture,
equalish(inverse(a),inverse(b)) != true ).
%------------------------------------------------------------------------------