TPTP Problem File: GRP024-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP024-5 : TPTP v9.0.0. Released v2.2.0.
% Domain : Group Theory
% Problem : Levi commutator problem.
% Version : [McC98] (equality) axioms.
% English : In group theory, if the commutator [x,y] is associative,
% then x*[y,z] = [y,z]*x.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [ML92] McCune & Lusk (1992), A Challenging Theorem of Levi
% : [Kur56] Kurosh (1956), The Theory of Groups
% Source : [McC98]
% Names :
% Status : Unsatisfiable
% Rating : 0.59 v8.2.0, 0.58 v8.1.0, 0.75 v7.5.0, 0.79 v7.4.0, 0.87 v7.3.0, 0.79 v7.1.0, 0.83 v7.0.0, 0.84 v6.4.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.79 v6.1.0, 0.81 v6.0.0, 0.86 v5.5.0, 0.84 v5.4.0, 0.80 v5.3.0, 0.83 v5.2.0, 0.79 v5.1.0, 0.73 v5.0.0, 0.79 v4.1.0, 0.64 v4.0.0, 0.62 v3.7.0, 0.33 v3.4.0, 0.38 v3.3.0, 0.57 v3.2.0, 0.50 v3.1.0, 0.44 v2.7.0, 0.64 v2.6.0, 0.33 v2.5.0, 0.00 v2.4.0, 0.33 v2.3.0, 0.67 v2.2.1
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
%----Definition of commutator:
cnf(name,axiom,
commutator(X,Y) = multiply(inverse(X),multiply(inverse(Y),multiply(X,Y))) ).
%----Theorem: commutator is associative implies x*[y,z] = [y,z]*x.
%----Hypothesis:
cnf(associativity_of_commutator,hypothesis,
commutator(commutator(X,Y),Z) = commutator(X,commutator(Y,Z)) ).
%----Denial of conclusion:
cnf(prove_center,negated_conjecture,
multiply(a,commutator(b,c)) != multiply(commutator(b,c),a) ).
%--------------------------------------------------------------------------