TPTP Problem File: GRP002-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : GRP002-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Group Theory
% Problem : Commutator equals identity in groups of order 3
% Version : [MOW76] (equality) axioms.
% Theorem formulation : Explicit formulation of the commutator.
% English : In a group, if (for all x) the cube of x is the identity
% (i.e. a group of order 3), then the equation [[x,y],y]=
% identity holds, where [x,y] is the product of x, y, the
% inverse of x and the inverse of y (i.e. the commutator
% of x and y).
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [LO85] Lusk & Overbeek (1985), Reasoning about Equality
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% Source : [TPTP]
% Names : Problem 4 [LO85]
% : Test Problem 2 [Wos88]
% : Commutator Theorem [Wos88]
% : GT3 [LW92]
% Status : Unsatisfiable
% Rating : 0.14 v9.0.0, 0.09 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.17 v7.4.0, 0.26 v7.3.0, 0.16 v7.1.0, 0.06 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include group theory axioms
include('Axioms/GRP004-0.ax').
%--------------------------------------------------------------------------
%----Redundant two axioms, but used in established axiomatizations.
cnf(right_identity,axiom,
multiply(X,identity) = X ).
cnf(right_inverse,axiom,
multiply(X,inverse(X)) = identity ).
%----Definition of the commutator
cnf(commutator,axiom,
commutator(X,Y) = multiply(X,multiply(Y,multiply(inverse(X),inverse(Y)))) ).
cnf(x_cubed_is_identity,hypothesis,
multiply(X,multiply(X,X)) = identity ).
cnf(prove_commutator,negated_conjecture,
commutator(commutator(a,b),b) != identity ).
%--------------------------------------------------------------------------