TPTP Problem File: GRP002-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRP002-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Commutator equals identity in groups of order 3
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.36 v8.2.0, 0.42 v8.1.0, 0.35 v7.5.0, 0.46 v7.4.0, 0.39 v7.3.0
% Syntax : Number of clauses : 18 ( 18 unt; 0 nHn; 6 RR)
% Number of literals : 18 ( 18 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 14 ( 14 usr; 9 con; 0-4 aty)
% Number of variables : 32 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from GRP002-1 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq(A,A,B,C) = B ).
cnf(left_identity,axiom,
product(identity,X,X) = true ).
cnf(right_identity,axiom,
product(X,identity,X) = true ).
cnf(left_inverse,axiom,
product(inverse(X),X,identity) = true ).
cnf(right_inverse,axiom,
product(X,inverse(X),identity) = true ).
cnf(total_function1,axiom,
product(X,Y,multiply(X,Y)) = true ).
cnf(total_function2,axiom,
ifeq2(product(X,Y,W),true,ifeq2(product(X,Y,Z),true,Z,W),W) = W ).
cnf(associativity1,axiom,
ifeq(product(U,Z,W),true,ifeq(product(Y,Z,V),true,ifeq(product(X,Y,U),true,product(X,V,W),true),true),true) = true ).
cnf(associativity2,axiom,
ifeq(product(Y,Z,V),true,ifeq(product(X,V,W),true,ifeq(product(X,Y,U),true,product(U,Z,W),true),true),true) = true ).
cnf(x_cubed_is_identity_1,hypothesis,
ifeq(product(X,X,Y),true,product(X,Y,identity),true) = true ).
cnf(x_cubed_is_identity_2,hypothesis,
ifeq(product(X,X,Y),true,product(Y,X,identity),true) = true ).
cnf(a_times_b_is_c,negated_conjecture,
product(a,b,c) = true ).
cnf(c_times_inverse_a_is_d,negated_conjecture,
product(c,inverse(a),d) = true ).
cnf(d_times_inverse_b_is_h,negated_conjecture,
product(d,inverse(b),h) = true ).
cnf(h_times_b_is_j,negated_conjecture,
product(h,b,j) = true ).
cnf(j_times_inverse_h_is_k,negated_conjecture,
product(j,inverse(h),k) = true ).
cnf(prove_k_times_inverse_b_is_e,negated_conjecture,
product(k,inverse(b),identity) != true ).
%------------------------------------------------------------------------------