TPTP Problem File: GRA030^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GRA030^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Graph Theory
% Problem : R(2,5) > 4
% Version : Especial.
% English :
% Refs : [Rad06] Radziszowski (2006), Small Ramsey Numbers
% : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names :
% Status : Theorem
% Rating : 0.50 v8.2.0, 0.64 v8.1.0, 0.67 v7.5.0, 0.75 v7.4.0, 0.78 v7.3.0, 0.80 v7.2.0, 0.75 v7.1.0, 0.71 v7.0.0, 0.75 v6.4.0, 0.71 v6.3.0, 0.83 v5.5.0, 0.80 v5.4.0, 0.75 v5.2.0, 1.00 v3.7.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 100 ( 18 ~; 9 |; 22 &; 48 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 35 ( 35 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 23 ( 23 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 15 ( 0 ^; 14 !; 1 ?; 15 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : If a type alpha has exactly n elements, then we can prove
% R(k,l) > n by finding a graph (symmetric binary relation) on type
% alpha with no k-cliques and no l-independent sets. Likewise, we
% can prove R(k,l) <= n by proving every graph (symmetric binary
% relation) on alpha must have a k-clique or l-independent set.
% There is one type with 4 elements: o > o. There are two types
% with 16 elements: o > o > o and (o > o) > o. There are two types
% with 256 elements: o > o > o > o and o > (o > o) > o. This means
% we always have two formulations of R(k,l) >/<= 16 and two
% formulations of R(k,l) >/<= 256.
% :
%------------------------------------------------------------------------------
thf(ramsey_l_2_5_4,conjecture,
? [G: ( $o > $o ) > ( $o > $o ) > $o] :
( ! [Xx: $o > $o,Xy: $o > $o] :
( ( G @ Xx @ Xy )
=> ( G @ Xy @ Xx ) )
& ! [Xx0: $o > $o,Xx1: $o > $o,Xp0: ( $o > $o ) > $o] :
( ( ( Xp0 @ Xx0 )
& ~ ( Xp0 @ Xx1 ) )
=> ~ ( G @ Xx1 @ Xx0 ) )
& ! [Xx0: $o > $o,Xx1: $o > $o,Xx2: $o > $o,Xx3: $o > $o,Xx4: $o > $o,Xp0: ( $o > $o ) > $o,Xp1: ( $o > $o ) > $o,Xp2: ( $o > $o ) > $o,Xp3: ( $o > $o ) > $o] :
( ( ( Xp0 @ Xx0 )
& ~ ( Xp0 @ Xx1 )
& ~ ( Xp0 @ Xx2 )
& ~ ( Xp0 @ Xx3 )
& ~ ( Xp0 @ Xx4 )
& ~ ( Xp1 @ Xx0 )
& ( Xp1 @ Xx1 )
& ~ ( Xp1 @ Xx2 )
& ~ ( Xp1 @ Xx3 )
& ~ ( Xp1 @ Xx4 )
& ~ ( Xp2 @ Xx0 )
& ~ ( Xp2 @ Xx1 )
& ( Xp2 @ Xx2 )
& ~ ( Xp2 @ Xx3 )
& ~ ( Xp2 @ Xx4 )
& ~ ( Xp3 @ Xx0 )
& ~ ( Xp3 @ Xx1 )
& ~ ( Xp3 @ Xx2 )
& ( Xp3 @ Xx3 )
& ~ ( Xp3 @ Xx4 ) )
=> ( ( G @ Xx1 @ Xx0 )
| ( G @ Xx2 @ Xx0 )
| ( G @ Xx2 @ Xx1 )
| ( G @ Xx3 @ Xx0 )
| ( G @ Xx3 @ Xx1 )
| ( G @ Xx3 @ Xx2 )
| ( G @ Xx4 @ Xx0 )
| ( G @ Xx4 @ Xx1 )
| ( G @ Xx4 @ Xx2 )
| ( G @ Xx4 @ Xx3 ) ) ) ) ).
%------------------------------------------------------------------------------