TPTP Problem File: GEO169+2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO169+2 : TPTP v9.0.0. Released v3.3.0.
% Domain : Geometry
% Problem : Reduction of 8 cases to 2 in Cronheim's proof of Hessenberg
% Version : Especial.
% English :
% Refs : [Bez07] Bezem (2007), Email to Geoff Sutcliffe
% Source : [Bez07]
% Names :
% Status : Theorem
% Rating : 0.48 v9.0.0, 0.53 v8.2.0, 0.50 v8.1.0, 0.53 v7.5.0, 0.62 v7.4.0, 0.47 v7.3.0, 0.52 v7.2.0, 0.48 v7.1.0, 0.57 v7.0.0, 0.50 v6.4.0, 0.54 v6.3.0, 0.58 v6.2.0, 0.64 v6.1.0, 0.73 v6.0.0, 0.65 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.78 v5.2.0, 0.65 v5.1.0, 0.71 v5.0.0, 0.79 v4.1.0, 0.83 v4.0.1, 0.78 v4.0.0, 0.83 v3.7.0, 0.57 v3.5.0, 0.67 v3.4.0, 0.58 v3.3.0
% Syntax : Number of formulae : 53 ( 29 unt; 0 def)
% Number of atoms : 94 ( 19 equ)
% Maximal formula atoms : 6 ( 1 avg)
% Number of connectives : 41 ( 0 ~; 4 |; 16 &)
% ( 0 <=>; 21 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 2 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 19 ( 19 usr; 19 con; 0-0 aty)
% Number of variables : 27 ( 25 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
fof(goal_normal,axiom,
! [A] :
( ( incident(p3,A)
& incident(p1,A)
& incident(p2,A) )
=> goal ) ).
fof(t_a_in_b,axiom,
( ( incident(a1,b2b3)
& incident(a2,b3b1)
& incident(a3,b1b2) )
=> goal ) ).
fof(t_b_in_a,axiom,
( ( incident(b1,a2a3)
& incident(b2,a3a1)
& incident(b3,a1a2) )
=> goal ) ).
fof(gap1,axiom,
( incident(a1,b2b3)
| incident(b3,a1a2) ) ).
fof(gap2,axiom,
( incident(a2,b3b1)
| incident(b1,a2a3) ) ).
fof(gap3,axiom,
( incident(a3,b1b2)
| incident(b2,a3a1) ) ).
fof(ia1a2,axiom,
incident(a1,a1a2) ).
fof(ia2a1,axiom,
incident(a2,a1a2) ).
fof(ia2a3,axiom,
incident(a2,a2a3) ).
fof(ia3a2,axiom,
incident(a3,a2a3) ).
fof(ia3a1,axiom,
incident(a3,a3a1) ).
fof(ia1a3,axiom,
incident(a1,a3a1) ).
fof(ib1b2,axiom,
incident(b1,b1b2) ).
fof(ib2b1,axiom,
incident(b2,b1b2) ).
fof(ib2b3,axiom,
incident(b2,b2b3) ).
fof(ib3b2,axiom,
incident(b3,b2b3) ).
fof(ib3b1,axiom,
incident(b3,b3b1) ).
fof(ib1b3,axiom,
incident(b1,b3b1) ).
fof(iss1,axiom,
incident(s,s1) ).
fof(iss2,axiom,
incident(s,s2) ).
fof(iss3,axiom,
incident(s,s3) ).
fof(ia1s1,axiom,
incident(a1,s1) ).
fof(ia2s2,axiom,
incident(a2,s2) ).
fof(ia3s3,axiom,
incident(a3,s3) ).
fof(ib1s1,axiom,
incident(b1,s1) ).
fof(ib2s2,axiom,
incident(b2,s2) ).
fof(ib3s3,axiom,
incident(b3,s3) ).
fof(ip3a,axiom,
incident(p3,a1a2) ).
fof(ip3b,axiom,
incident(p3,b1b2) ).
fof(ip1a,axiom,
incident(p1,a2a3) ).
fof(ip1b,axiom,
incident(p1,b2b3) ).
fof(ip2a,axiom,
incident(p2,a3a1) ).
fof(ip2b,axiom,
incident(p2,b3b1) ).
fof(sort_point,axiom,
! [A,B] :
( incident(A,B)
=> point(A) ) ).
fof(sort_line,axiom,
! [A,B] :
( incident(A,B)
=> line(B) ) ).
fof(diff_a1_a2,axiom,
( a1 = a2
=> goal ) ).
fof(diff_a2_a3,axiom,
( a2 = a3
=> goal ) ).
fof(diff_a3_a1,axiom,
( a3 = a1
=> goal ) ).
fof(diff_b1_b2,axiom,
( b1 = b2
=> goal ) ).
fof(diff_b2_b3,axiom,
( b2 = b3
=> goal ) ).
fof(diff_b3_b1,axiom,
( b3 = b1
=> goal ) ).
fof(not12,axiom,
( a1a2 = b1b2
=> goal ) ).
fof(not23,axiom,
( a2a3 = b2b3
=> goal ) ).
fof(not31,axiom,
( a3a1 = b3b1
=> goal ) ).
fof(reflexivity_of_equal,axiom,
! [A] : A = A ).
fof(symmetry_of_equal,axiom,
! [A,B] :
( A = B
=> B = A ) ).
fof(transitivity_of_equal,axiom,
! [A,B,C] :
( ( A = B
& B = C )
=> A = C ) ).
fof(point_congruence,axiom,
! [A,B,C] :
( ( A = B
& incident(B,C) )
=> incident(A,C) ) ).
fof(line_congruence,axiom,
! [A,B,C] :
( ( incident(A,B)
& B = C )
=> incident(A,C) ) ).
fof(unique,axiom,
! [A,B,C,D] :
( ( incident(A,C)
& incident(A,D)
& incident(B,C)
& incident(B,D) )
=> ( A = B
| C = D ) ) ).
fof(join,axiom,
! [A,B] :
( ( point(A)
& point(B) )
=> ? [C] :
( incident(A,C)
& incident(B,C) ) ) ).
fof(meet,axiom,
! [A,B] :
( ( line(A)
& line(B) )
=> ? [C] :
( incident(C,A)
& incident(C,B) ) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------