TPTP Problem File: GEO168+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO168+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Geometry
% Problem : Pappus2 implies Pappus1
% Version : Especial.
% English :
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : p2p1 [Bez05]
% Status : Theorem
% Rating : 0.60 v9.0.0, 0.56 v8.2.0, 0.53 v8.1.0, 0.64 v7.5.0, 0.86 v7.4.0, 0.75 v7.3.0, 0.86 v7.2.0, 0.67 v7.1.0, 0.75 v7.0.0, 0.79 v6.4.0, 0.71 v6.3.0, 0.69 v6.2.0, 0.91 v6.1.0, 0.96 v6.0.0, 0.75 v5.5.0, 0.96 v5.2.0, 1.00 v4.0.1, 0.95 v4.0.0, 1.00 v3.3.0, 0.89 v3.2.0
% Syntax : Number of formulae : 27 ( 1 unt; 0 def)
% Number of atoms : 77 ( 0 equ)
% Maximal formula atoms : 12 ( 2 avg)
% Number of connectives : 50 ( 0 ~; 4 |; 24 &)
% ( 0 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 1 prp; 0-4 aty)
% Number of functors : 17 ( 17 usr; 17 con; 0-0 aty)
% Number of variables : 62 ( 59 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(assumption1,axiom,
( colinear(a,b,c,l)
& colinear(d,e,f,m) ) ).
fof(assumption2,axiom,
( colinear(b,f,g,n)
& colinear(c,e,g,o) ) ).
fof(assumption3,axiom,
( colinear(b,d,h,p)
& colinear(a,e,h,q) ) ).
fof(assumption4,axiom,
( colinear(c,d,i,r)
& colinear(a,f,i,s) ) ).
fof(goalam,axiom,
( incident(a,m)
=> goal ) ).
fof(goalbm,axiom,
( incident(b,m)
=> goal ) ).
fof(goalcm,axiom,
( incident(c,m)
=> goal ) ).
fof(goaldl,axiom,
( incident(d,l)
=> goal ) ).
fof(goalel,axiom,
( incident(e,l)
=> goal ) ).
fof(goalfl,axiom,
( incident(f,l)
=> goal ) ).
fof(goal4,axiom,
! [A] :
( ( incident(g,A)
& incident(h,A)
& incident(i,A) )
=> goal ) ).
fof(colinearity_elimination1,axiom,
! [A,B,C,D] :
( colinear(A,B,C,D)
=> incident(A,D) ) ).
fof(colinearity_elimination2,axiom,
! [A,B,C,D] :
( colinear(A,B,C,D)
=> incident(B,D) ) ).
fof(colinearity_elimination3,axiom,
! [A,B,C,D] :
( colinear(A,B,C,D)
=> incident(C,D) ) ).
fof(reflexivity_of_point_equal,axiom,
! [A,B] :
( incident(A,B)
=> point_equal(A,A) ) ).
fof(symmetry_of_point_equal,axiom,
! [A,B] :
( point_equal(A,B)
=> point_equal(B,A) ) ).
fof(transitivity_of_point_equal,axiom,
! [A,B,C] :
( ( point_equal(A,B)
& point_equal(B,C) )
=> point_equal(A,C) ) ).
fof(reflexivity_of_line_equal,axiom,
! [A,B] :
( incident(A,B)
=> line_equal(B,B) ) ).
fof(symmetry_of_line_equal,axiom,
! [A,B] :
( line_equal(A,B)
=> line_equal(B,A) ) ).
fof(transitivity_of_line_equal,axiom,
! [A,B,C] :
( ( line_equal(A,B)
& line_equal(B,C) )
=> line_equal(A,C) ) ).
fof(pcon,axiom,
! [A,B,C] :
( ( point_equal(A,B)
& incident(B,C) )
=> incident(A,C) ) ).
fof(lcon,axiom,
! [A,B,C] :
( ( incident(A,B)
& line_equal(B,C) )
=> incident(A,C) ) ).
fof(pappus1,axiom,
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q] :
( ( colinear(A,B,C,J)
& colinear(D,E,F,K)
& colinear(B,F,G,L)
& colinear(C,E,G,M)
& colinear(B,D,H,N)
& colinear(A,E,H,O)
& colinear(C,D,I,P)
& colinear(A,F,I,Q) )
=> ( ? [R] : colinear(G,H,I,R)
| line_equal(L,M)
| line_equal(N,O)
| line_equal(P,Q) ) ) ).
fof(unique,axiom,
! [A,B,C,D] :
( ( incident(C,A)
& incident(C,B)
& incident(D,A)
& incident(D,B) )
=> ( point_equal(C,D)
| line_equal(A,B) ) ) ).
fof(line,axiom,
! [A,B] :
( ( point_equal(A,A)
& point_equal(B,B) )
=> ? [C] :
( incident(A,C)
& incident(B,C) ) ) ).
fof(point,axiom,
! [A,B,C] :
( ( line_equal(C,C)
& line_equal(B,B) )
=> ? [A] :
( incident(A,B)
& incident(A,C) ) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------