TPTP Problem File: GEO001_10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEO001_10 : TPTP v9.0.0. Released v8.2.0.
% Domain : Geometry
% Problem : Betweenness is symmetric in its outer arguments
% Version : GEO001_1 with the conjecture removed
% English :
% Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 14 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 15 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 8 ( 0 ~; 0 |; 3 &)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 18 ( 5 >; 13 *; 0 +; 0 <<)
% Number of predicates : 3 ( 3 usr; 0 prp; 2-4 aty)
% Number of functors : 2 ( 2 usr; 0 con; 4-5 aty)
% Number of variables : 27 ( 27 !; 0 ?; 27 :)
% SPC : TF0_SAT_NEQ_NAR
% Comments : Based on GEO001-4.
%------------------------------------------------------------------------------
tff(point_type,type,
point: $tType ).
tff(line_point_type,type,
line_point: $tType ).
tff(outer_pasch_type,type,
outer_pasch: ( point * point * point * point * point ) > point ).
tff(extension_type,type,
extension: ( point * point * line_point * line_point ) > point ).
tff(equidistant_type,type,
equidistant: ( point * point * line_point * line_point ) > $o ).
tff(equalish_type,type,
equalish: ( point * point ) > $o ).
tff(between_type,type,
between: ( point * point * point ) > $o ).
tff(identity_for_betweeness,axiom,
! [Y: point,X: point] :
( between(X,Y,X)
=> equalish(X,Y) ) ).
tff(identity_for_equidistance,axiom,
! [Z: line_point,Y: point,X: point] :
( equidistant(X,Y,Z,Z)
=> equalish(X,Y) ) ).
tff(outer_pasch1,axiom,
! [Z: point,Y: point,V: point,W: point,X: point] :
( ( between(X,W,V)
& between(Y,V,Z) )
=> between(X,outer_pasch(W,X,Y,Z,V),Y) ) ).
tff(outer_pasch2,axiom,
! [Z: point,Y: point,V: point,W: point,X: point] :
( ( between(X,W,V)
& between(Y,V,Z) )
=> between(Z,W,outer_pasch(W,X,Y,Z,V)) ) ).
tff(segment_construction1,axiom,
! [V: line_point,W: line_point,Y: point,X: point] : between(X,Y,extension(X,Y,W,V)) ).
tff(segment_construction2,axiom,
! [V: line_point,W: line_point,X: point,Y: point] : equidistant(Y,extension(X,Y,W,V),W,V) ).
tff(between_substitution3,axiom,
! [Z: point,W: point,Y: point,X: point] :
( ( equalish(X,Y)
& between(W,Z,X) )
=> between(W,Z,Y) ) ).
% tff(symmetric,conjecture,
% ! [X: point,Y: point,Z: point] :
% ( between(X,Y,Z)
% => between(Z,Y,X) ) ).
%------------------------------------------------------------------------------