TPTP Problem File: GEG003^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : GEG003^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Geography
% Problem : Bob knows Catalunya and Paris and Spain and Paris are disconnected
% Version : [RCC92] axioms.
% English : We here express that some spatial relations about Catalunya,
% France, Spain, and Paris are commonly known (modality box_fool),
% while others are known only to person Bob (modality box_bob). We
% prove that Bob knows that Catalunya and Paris and Spain and Paris
% are disconnected.
% Refs : [RCC92] Randell et al. (1992), A Spatial Logic Based on Region
% : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : Problem 62 [Ben10b]
% Status : Theorem
% Rating : 0.38 v9.0.0, 0.60 v8.2.0, 0.54 v8.1.0, 0.55 v7.5.0, 0.57 v7.4.0, 0.56 v7.3.0, 0.67 v7.2.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.40 v5.2.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0
% Syntax : Number of formulae : 96 ( 41 unt; 49 typ; 40 def)
% Number of atoms : 157 ( 45 equ; 0 cnn)
% Maximal formula atoms : 7 ( 3 avg)
% Number of connectives : 218 ( 10 ~; 4 |; 19 &; 175 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 4 ( 2 usr)
% Number of type conns : 193 ( 193 >; 0 *; 0 +; 0 <<)
% Number of symbols : 57 ( 55 usr; 13 con; 0-3 aty)
% Number of variables : 114 ( 72 ^; 33 !; 9 ?; 114 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include Region Connection Calculus axioms
include('Axioms/LCL013^0.ax').
include('Axioms/LCL014^0.ax').
%------------------------------------------------------------------------------
thf(catalunya,type,
catalunya: reg ).
thf(france,type,
france: reg ).
thf(spain,type,
spain: reg ).
thf(paris,type,
paris: reg ).
thf(a,type,
a: $i > $i > $o ).
thf(fool,type,
fool: $i > $i > $o ).
thf(i_axiom_for_fool_a,axiom,
( mvalid
@ ( mforall_prop
@ ^ [Phi: $i > $o] : ( mimplies @ ( mbox @ fool @ Phi ) @ ( mbox @ a @ Phi ) ) ) ) ).
thf(ax1,axiom,
( mvalid
@ ( mbox @ a
@ ^ [X: $i] : ( tpp @ catalunya @ spain ) ) ) ).
thf(ax2,axiom,
( mvalid
@ ( mbox @ fool
@ ^ [X: $i] : ( ec @ spain @ france ) ) ) ).
thf(ax3,axiom,
( mvalid
@ ( mbox @ a
@ ^ [X: $i] : ( ntpp @ paris @ france ) ) ) ).
thf(con,conjecture,
( mvalid
@ ( mbox @ a
@ ^ [X: $i] :
( ( dc @ catalunya @ paris )
& ( dc @ spain @ paris ) ) ) ) ).
%------------------------------------------------------------------------------