TPTP Problem File: DAT078_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT078_1 : TPTP v9.0.0. Released v6.1.0.
% Domain : Data Structures
% Problem : Arrays problem 8
% Version : Especial.
% English :
% Refs : [BB14] Baumgartner & Bax (2014), Proving Infinite Satisfiabil
% [Bau14] Baumgartner (2014), Email to Geoff Sutcliffe
% Source : [Bau14]
% Names :
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.38 v8.2.0, 0.50 v7.5.0, 0.60 v7.4.0, 0.25 v7.3.0, 0.33 v7.0.0, 0.29 v6.4.0, 0.67 v6.3.0, 0.43 v6.2.0, 0.88 v6.1.0
% Syntax : Number of formulae : 19 ( 2 unt; 9 typ; 0 def)
% Number of atoms : 41 ( 13 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 32 ( 1 ~; 3 |; 16 &)
% ( 3 <=>; 7 =>; 2 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 60 ( 23 atm; 2 fun; 11 num; 24 var)
% Number of types : 3 ( 1 usr; 1 ari)
% Number of type conns : 17 ( 8 >; 9 *; 0 +; 0 <<)
% Number of predicates : 8 ( 3 usr; 0 prp; 2-3 aty)
% Number of functors : 9 ( 5 usr; 2 con; 0-3 aty)
% Number of variables : 35 ( 34 !; 1 ?; 35 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
%----Theory of arrays with integer indices and integer elements
tff(array_type,type,
array: $tType ).
tff(read_type,type,
read: ( array * $int ) > $int ).
tff(write_type,type,
write: ( array * $int * $int ) > array ).
tff(ax1,axiom,
! [A: array,I: $int,V: $int] : ( read(write(A,I,V),I) = V ) ).
tff(ax2,axiom,
! [A: array,I: $int,J: $int,V: $int] :
( ( I = J )
| ( read(write(A,I,V),J) = read(A,J) ) ) ).
tff(ext,axiom,
! [A: array,B: array] :
( ! [I: $int] : ( read(A,I) = read(B,I) )
=> ( A = B ) ) ).
tff(init_type,type,
init: $int > array ).
%----Initialized arrays: init(V) is the array that has the value V everywhere
tff(ax3,axiom,
! [V: $int,I: $int] : ( read(init(V),I) = V ) ).
%----Axiom for max function
tff(max,type,
max: ( array * $int ) > $int ).
tff(a,axiom,
! [A: array,N: $int,W: $int] :
( ( max(A,N) = W )
<= ( ! [I: $int] :
( ( $greater(N,I)
& $greatereq(I,0) )
=> $lesseq(read(A,I),W) )
& ? [I: $int] :
( $greater(N,I)
& $greatereq(I,0)
& ( read(A,I) = W ) ) ) ) ).
%----Expresses that the first N elements are sorted
tff(sorted_type,type,
sorted: ( array * $int ) > $o ).
tff(sorted1,axiom,
! [A: array,N: $int] :
( sorted(A,N)
<=> ! [I: $int,J: $int] :
( ( $lesseq(0,I)
& $less(I,N)
& $less(I,J)
& $less(J,N) )
=> $lesseq(read(A,I),read(A,J)) ) ) ).
%----inRange
tff(inRange_type,type,
inRange: ( array * $int * $int ) > $o ).
tff(inRange,axiom,
! [A: array,R: $int,N: $int] :
( inRange(A,R,N)
<=> ! [I: $int] :
( ( $greater(N,I)
& $greatereq(I,0) )
=> ( $greatereq(R,read(A,I))
& $greatereq(read(A,I),0) ) ) ) ).
%----Distinct
tff(distinct_type,type,
distinct: ( array * $int ) > $o ).
tff(distinct,axiom,
! [A: array,N: $int] :
( distinct(A,N)
<=> ! [I: $int,J: $int] :
( ( $greater(N,I)
& $greater(N,J)
& $greatereq(J,0)
& $greatereq(I,0) )
=> ( ( read(A,I) = read(A,J) )
=> ( I = J ) ) ) ) ).
%----Reverse
tff(rev_n,type,
rev: ( array * $int ) > array ).
tff(rev_n1_proper,axiom,
! [A: array,B: array,N: $int] :
( ( rev(A,N) = B )
<= ! [I: $int] :
( ( $greatereq(I,0)
& $greater(N,I)
& ( read(B,I) = read(A,$difference(N,$sum(I,1))) ) )
| ( ( $greater(0,I)
| $greatereq(I,N) )
& ( read(B,I) = read(A,I) ) ) ) ) ).
tff(c6,conjecture,
~ ! [A: array,N: $int] :
( ( sorted(A,N)
& $greater(N,0) )
=> distinct(A,N) ) ).
%------------------------------------------------------------------------------