TPTP Problem File: CSR153^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR153^3 : TPTP v9.0.0. Released v5.3.0.
% Domain : Commonsense Reasoning
% Problem : Did someone like Bill in 2009?
% Version : Especial.
% English : During 2009 Mary liked Bill and Sue liked Bill. Is it the case
% that someone liked Bill during 2009?
% Refs : [BP10] Benzmueller & Pease (2010), Progress in Automating Hig
% : [Ben11] Benzmueller (2011), Email to Geoff Sutcliffe
% Source : [Ben11]
% Names :
% Status : ContradictoryAxioms
% Rating : 0.25 v9.0.0, 0.40 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.80 v6.2.0, 0.71 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0
% Syntax : Number of formulae : 5019 (1673 unt;1436 typ; 0 def)
% Number of atoms : 7512 ( 412 equ; 202 cnn)
% Maximal formula atoms : 16 ( 2 avg)
% Number of connectives : 16699 ( 202 ~; 77 |;1322 &;14045 @)
% ( 105 <=>; 948 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 1323 (1323 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1439 (1435 usr; 993 con; 0-7 aty)
% Number of variables : 2573 ( 2 ^;2077 !; 494 ?;2573 :)
% SPC : TH0_CAX_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include SUMO axioms
include('Axioms/CSR005^0.ax').
%------------------------------------------------------------------------------
%----The extracted Signature
thf(brother_THFTYPE_IiioI,type,
brother_THFTYPE_IiioI: $i > $i > $o ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lBob_THFTYPE_i,type,
lBob_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(sister_THFTYPE_IiioI,type,
sister_THFTYPE_IiioI: $i > $i > $o ).
%----The translated axioms
thf(ax,axiom,
( ( sister_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i )
& ( sister_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBob_THFTYPE_i )
& ( brother_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ) ) ).
thf(ax_001,axiom,
( ( (~) @ ( lMary_THFTYPE_i = lSue_THFTYPE_i ) )
& ( (~) @ ( lMary_THFTYPE_i = lBill_THFTYPE_i ) )
& ( (~) @ ( lBob_THFTYPE_i = lMary_THFTYPE_i ) ) ) ).
thf(ax_002,axiom,
( ( (~) @ ( lSue_THFTYPE_i = lBill_THFTYPE_i ) )
& ( (~) @ ( lSue_THFTYPE_i = lBob_THFTYPE_i ) ) ) ).
thf(ax_003,axiom,
( ( (~) @ ( sister_THFTYPE_IiioI @ lMary_THFTYPE_i @ lSue_THFTYPE_i ) )
& ( (~) @ ( sister_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ) )
& ( (~) @ ( brother_THFTYPE_IiioI @ lBob_THFTYPE_i @ lMary_THFTYPE_i ) ) ) ).
thf(ax_004,axiom,
(~) @ ( lBob_THFTYPE_i = lBill_THFTYPE_i ) ).
%----The translated conjectures
thf(con,conjecture,
? [R: $i > $i > $o] :
( ( R @ lBob_THFTYPE_i @ lBill_THFTYPE_i )
& ( R @ lSue_THFTYPE_i @ lBob_THFTYPE_i )
& ( (~)
@ ! [X: $i,Y: $i] : ( R @ X @ Y ) ) ) ).
%------------------------------------------------------------------------------