TPTP Problem File: CSR150^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR150^3 : TPTP v9.0.0. Released v5.3.0.
% Domain : Commonsense Reasoning
% Problem : Did someone like Bill in 2009?
% Version : Especial.
% English : During 2009 Mary liked Bill and Sue liked Bill. Is it the case
% that someone liked Bill during 2009?
% Refs : [BP10] Benzmueller & Pease (2010), Progress in Automating Hig
% : [Ben11] Benzmueller (2011), Email to Geoff Sutcliffe
% Source : [Ben11]
% Names :
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.30 v8.2.0, 0.38 v8.1.0, 0.27 v7.5.0, 0.00 v7.4.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.50 v7.0.0, 0.71 v6.4.0, 0.67 v6.3.0, 0.80 v6.2.0, 0.71 v6.1.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.3.0
% Syntax : Number of formulae : 5014 (1665 unt;1433 typ; 0 def)
% Number of atoms : 7537 ( 406 equ; 192 cnn)
% Maximal formula atoms : 16 ( 2 avg)
% Number of connectives : 16678 ( 192 ~; 77 |;1315 &;14039 @)
% ( 107 <=>; 948 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 1321 (1321 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1440 (1436 usr; 994 con; 0-7 aty)
% Number of variables : 2579 ( 4 ^;2079 !; 496 ?;2579 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include SUMO axioms
include('Axioms/CSR005^0.ax').
%------------------------------------------------------------------------------
%----The extracted Signature
thf(grandchild_THFTYPE_IiioI,type,
grandchild_THFTYPE_IiioI: $i > $i > $o ).
thf(grandparent_THFTYPE_IiioI,type,
grandparent_THFTYPE_IiioI: $i > $i > $o ).
thf(lJohn_THFTYPE_i,type,
lJohn_THFTYPE_i: $i ).
%----The translated axioms
thf(ax,axiom,
! [X: $i,Y: $i] :
( ( grandparent_THFTYPE_IiioI @ X @ Y )
<=> ? [Z: $i] :
( ( parent_THFTYPE_IiioI @ X @ Z )
& ( parent_THFTYPE_IiioI @ Z @ Y ) ) ) ).
thf(ax_001,axiom,
( ltet_THFTYPE_IiioI
@ ( lCardinalityFn_THFTYPE_IIioIiI
@ ^ [X: $i] : ( grandparent_THFTYPE_IiioI @ lJohn_THFTYPE_i @ X ) )
@ n3_THFTYPE_i ) ).
thf(ax_002,axiom,
! [X: $i,Y: $i] :
( ( grandchild_THFTYPE_IiioI @ X @ Y )
<=> ? [Z: $i] :
( ( parent_THFTYPE_IiioI @ Z @ X )
& ( parent_THFTYPE_IiioI @ Y @ Z ) ) ) ).
%----The translated conjectures
thf(con,conjecture,
? [Y: $i] :
( ltet_THFTYPE_IiioI
@ ( lCardinalityFn_THFTYPE_IIioIiI
@ ^ [X: $i] : ( grandchild_THFTYPE_IiioI @ X @ lJohn_THFTYPE_i ) )
@ Y ) ).
%------------------------------------------------------------------------------