TPTP Problem File: CSR144^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR144^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : Does Max think he's single?
% Version : Especial.
% English : There is no time during which Max considers to have a wife. Is it
% true that Max does not believe that he is a husband of somebody?.
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : ex_3.tq_SUMO_handselected [Ben10]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.33 v7.3.0, 0.30 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.2.0, 0.33 v6.1.0, 0.67 v6.0.0, 0.33 v5.5.0, 0.20 v5.4.0, 0.00 v5.3.0, 0.50 v5.0.0, 0.25 v4.1.0
% Syntax : Number of formulae : 13 ( 1 unt; 8 typ; 0 def)
% Number of atoms : 14 ( 0 equ; 2 cnn)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 31 ( 2 ~; 0 |; 0 &; 26 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 7 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 20 ( 20 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 10 ( 0 ^; 7 !; 3 ?; 10 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in three modes: handselected,
% SInE, and local. The local mode only translates the local
% assumptions and the query. The SInE mode additionally translates
% the SInE extract of the loaded knowledge base (usually SUMO). The
% handselected mode contains a hand-selected relevant axioms.
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(believes_THFTYPE_IiooI,type,
believes_THFTYPE_IiooI: $i > $o > $o ).
thf(considers_THFTYPE_IiooI,type,
considers_THFTYPE_IiooI: $i > $o > $o ).
thf(holdsDuring_THFTYPE_IiooI,type,
holdsDuring_THFTYPE_IiooI: $i > $o > $o ).
thf(husband_THFTYPE_IiioI,type,
husband_THFTYPE_IiioI: $i > $i > $o ).
thf(lMax_THFTYPE_i,type,
lMax_THFTYPE_i: $i ).
thf(wife_THFTYPE_IiioI,type,
wife_THFTYPE_IiioI: $i > $i > $o ).
%----The handselected axioms from the knowledge base
thf(inverse_THFTYPE_IIiioIIiioIoI,type,
inverse_THFTYPE_IIiioIIiioIoI: ( $i > $i > $o ) > ( $i > $i > $o ) > $o ).
thf(ax,axiom,
inverse_THFTYPE_IIiioIIiioIoI @ husband_THFTYPE_IiioI @ wife_THFTYPE_IiioI ).
thf(ax_001,axiom,
! [REL2: $i > $i > $o,REL1: $i > $i > $o] :
( ( inverse_THFTYPE_IIiioIIiioIoI @ REL1 @ REL2 )
=> ! [INST1: $i,INST2: $i] :
( ( REL1 @ INST1 @ INST2 )
<=> ( REL2 @ INST2 @ INST1 ) ) ) ).
thf(ax_002,axiom,
! [FORMULA: $o,AGENT: $i] :
( ( believes_THFTYPE_IiooI @ AGENT @ FORMULA )
=> ? [TIME: $i] : ( holdsDuring_THFTYPE_IiooI @ TIME @ ( considers_THFTYPE_IiooI @ AGENT @ FORMULA ) ) ) ).
%----The translated axioms
thf(ax_003,axiom,
! [X: $i] :
( (~)
@ ? [Z: $i] : ( holdsDuring_THFTYPE_IiooI @ Z @ ( considers_THFTYPE_IiooI @ lMax_THFTYPE_i @ ( wife_THFTYPE_IiioI @ X @ lMax_THFTYPE_i ) ) ) ) ).
%----The translated conjectures
thf(con,conjecture,
? [Z: $i] : ( (~) @ ( believes_THFTYPE_IiooI @ lMax_THFTYPE_i @ ( husband_THFTYPE_IiioI @ lMax_THFTYPE_i @ Z ) ) ) ).
%------------------------------------------------------------------------------