TPTP Problem File: CSR138^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR138^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : Feelings from people to Bill and Anna
% Version : Especial.
% English : Do there exist relations ?R and ?Q so that ?R holds between a
% person ?Y and Bill and ?Q between ?Y and Anna.
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : rv_4.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.25 v9.0.0, 0.20 v8.2.0, 0.31 v8.1.0, 0.27 v7.5.0, 0.29 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v6.1.0, 0.57 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0
% Syntax : Number of formulae : 19 ( 7 unt; 9 typ; 0 def)
% Number of atoms : 17 ( 2 equ; 4 cnn)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 33 ( 4 ~; 0 |; 3 &; 26 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 4 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 8 usr; 8 con; 0-2 aty)
% Number of variables : 11 ( 4 ^; 0 !; 7 ?; 11 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(lAnna_THFTYPE_i,type,
lAnna_THFTYPE_i: $i ).
thf(lBen_THFTYPE_i,type,
lBen_THFTYPE_i: $i ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lBob_THFTYPE_i,type,
lBob_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(likes_THFTYPE_IiioI,type,
likes_THFTYPE_IiioI: $i > $i > $o ).
thf(parent_THFTYPE_IiioI,type,
parent_THFTYPE_IiioI: $i > $i > $o ).
%----The translated axioms
thf(ax,axiom,
likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_001,axiom,
likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_002,axiom,
? [X: $i,Y: $i] : ( (~) @ ( parent_THFTYPE_IiioI @ X @ Y ) ) ).
thf(ax_003,axiom,
? [X: $i,Y: $i] : ( (~) @ ( likes_THFTYPE_IiioI @ X @ Y ) ) ).
thf(ax_004,axiom,
parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBen_THFTYPE_i ).
thf(ax_005,axiom,
parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ).
thf(ax_006,axiom,
likes_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_007,axiom,
parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lAnna_THFTYPE_i ).
thf(ax_008,axiom,
parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lAnna_THFTYPE_i ).
%----The translated conjecture
thf(con,conjecture,
? [Q: $i > $i > $o,R: $i > $i > $o,Y: $i] :
( ( R @ Y @ lBill_THFTYPE_i )
& ( Q @ Y @ lAnna_THFTYPE_i )
& ( (~)
@ ( R
= ( ^ [Z: $i,W: $i] : $true ) ) )
& ( (~)
@ ( Q
= ( ^ [Z: $i,W: $i] : $true ) ) ) ) ).
%------------------------------------------------------------------------------