TPTP Problem File: CSR134^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : CSR134^1 : TPTP v9.0.0. Released v4.1.0.
% Domain   : Commonsense Reasoning
% Problem  : In 2009, what are different feelings of people to Anna?
% Version  : Especial.
% English  : In the context of year 2009: Does there exists a relation ?R and 
%            persons ?X and ?Y so that ?R holds between ?X and Anna but not 
%            between ?Y and Anna.

% Refs     : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source   : [Ben10]
% Names    : ef_rv_6.tq_SUMO_local [Ben10]

% Status   : Theorem
% Rating   : 0.25 v9.0.0, 0.17 v8.2.0, 0.18 v8.1.0, 0.33 v7.3.0, 0.30 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.1.0, 0.67 v6.0.0, 0.33 v5.5.0, 0.40 v5.4.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.50 v4.1.0
% Syntax   : Number of formulae    :   23 (   0 unt;  12 typ;   0 def)
%            Number of atoms       :   25 (   0 equ;   4 cnn)
%            Maximal formula atoms :    3 (   2 avg)
%            Number of connectives :   66 (   4   ~;   0   |;   1   &;  61   @)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   5 avg)
%            Number of types       :    3 (   1 usr)
%            Number of type conns  :    9 (   9   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   12 (  11 usr;   8 con; 0-2 aty)
%            Number of variables   :    3 (   0   ^;   0   !;   3   ?;   3   :)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This is a simple test problem for reasoning in/about SUMO.
%            Initally the problem has been hand generated in KIF syntax in
%            SigmaKEE and then automatically translated by Benzmueller's
%            KIF2TH0 translator into THF syntax.
%          : The translation has been applied in two modes: local and SInE.
%            The local mode only translates the local assumptions and the
%            query. The SInE mode additionally translates the SInE-extract
%            of the loaded knowledge base (usually SUMO).
%          : The examples are selected to illustrate the benefits of
%            higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
    num: $tType ).

thf(holdsDuring_THFTYPE_IiooI,type,
    holdsDuring_THFTYPE_IiooI: $i > $o > $o ).

thf(lAnna_THFTYPE_i,type,
    lAnna_THFTYPE_i: $i ).

thf(lBen_THFTYPE_i,type,
    lBen_THFTYPE_i: $i ).

thf(lBill_THFTYPE_i,type,
    lBill_THFTYPE_i: $i ).

thf(lBob_THFTYPE_i,type,
    lBob_THFTYPE_i: $i ).

thf(lMary_THFTYPE_i,type,
    lMary_THFTYPE_i: $i ).

thf(lSue_THFTYPE_i,type,
    lSue_THFTYPE_i: $i ).

thf(lYearFn_THFTYPE_IiiI,type,
    lYearFn_THFTYPE_IiiI: $i > $i ).

thf(likes_THFTYPE_IiioI,type,
    likes_THFTYPE_IiioI: $i > $i > $o ).

thf(n2009_THFTYPE_i,type,
    n2009_THFTYPE_i: $i ).

thf(parent_THFTYPE_IiioI,type,
    parent_THFTYPE_IiioI: $i > $i > $o ).

%----The translated axioms
thf(ax,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lAnna_THFTYPE_i ) ).

thf(ax_001,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ) ).

thf(ax_002,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( (~) @ ( parent_THFTYPE_IiioI @ lBob_THFTYPE_i @ lAnna_THFTYPE_i ) ) ).

thf(ax_003,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ) ).

thf(ax_004,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ) ).

thf(ax_005,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( (~) @ ( parent_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBen_THFTYPE_i ) ) ).

thf(ax_006,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ) ).

thf(ax_007,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lAnna_THFTYPE_i ) ).

thf(ax_008,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBen_THFTYPE_i ) ).

thf(ax_009,axiom,
    holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( (~) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lMary_THFTYPE_i ) ) ).

%----The translated conjecture
thf(con,conjecture,
    ? [R: $i > $i > $o,X: $i,Y: $i] :
      ( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i )
      @ ( ( R @ X @ lAnna_THFTYPE_i )
        & ( (~) @ ( R @ Y @ lAnna_THFTYPE_i ) ) ) ) ).

%------------------------------------------------------------------------------