TPTP Problem File: CSR130^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR130^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : In 2009, what's the common feeling between Sue and Mary, and Bill?
% Version : Especial.
% English : In the context of year 2009: Does there exists a relation ?R that
% holds between Sue and Bill as well as between Mary and Bill?
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : ef_rv_2.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.25 v8.2.0, 0.27 v8.1.0, 0.33 v7.3.0, 0.40 v7.2.0, 0.50 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.1.0, 0.83 v6.0.0, 0.67 v5.5.0, 0.60 v5.4.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.50 v4.1.0
% Syntax : Number of formulae : 21 ( 0 unt; 12 typ; 0 def)
% Number of atoms : 19 ( 0 equ; 2 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 55 ( 2 ~; 0 |; 2 &; 51 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 8 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 2 !; 1 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
% : Note that the universal predicate is excluded for ?R with the
% second conjunct in the query.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(holdsDuring_THFTYPE_IiooI,type,
holdsDuring_THFTYPE_IiooI: $i > $o > $o ).
thf(lAnna_THFTYPE_i,type,
lAnna_THFTYPE_i: $i ).
thf(lBen_THFTYPE_i,type,
lBen_THFTYPE_i: $i ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lBob_THFTYPE_i,type,
lBob_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(lYearFn_THFTYPE_IiiI,type,
lYearFn_THFTYPE_IiiI: $i > $i ).
thf(likes_THFTYPE_IiioI,type,
likes_THFTYPE_IiioI: $i > $i > $o ).
thf(n2009_THFTYPE_i,type,
n2009_THFTYPE_i: $i ).
thf(parent_THFTYPE_IiioI,type,
parent_THFTYPE_IiioI: $i > $i > $o ).
%----The translated axioms
thf(ax,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lAnna_THFTYPE_i ) ).
thf(ax_001,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ) ).
thf(ax_002,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ) ).
thf(ax_003,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ) ).
thf(ax_004,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ) ).
thf(ax_005,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lAnna_THFTYPE_i ) ).
thf(ax_006,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBen_THFTYPE_i ) ).
thf(ax_007,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( (~) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lMary_THFTYPE_i ) ) ).
%----The translated conjecture
thf(con,conjecture,
? [R: $i > $i > $o] :
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i )
@ ( ( R @ lSue_THFTYPE_i @ lBill_THFTYPE_i )
& ( R @ lMary_THFTYPE_i @ lBill_THFTYPE_i )
& ( (~)
@ ! [A: $i,B: $i] : ( R @ A @ B ) ) ) ) ).
%------------------------------------------------------------------------------