TPTP Problem File: CSR115+73.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : CSR115+73 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Commonsense Reasoning
% Problem  : Which British company was taken over by BMW in 1994?
% Version  : [Pel09] axioms.
% English  :

% Refs     : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
%          : [PW07]  Pelzer & Wernhard (2007), System Description: E-KRHype
%          : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
%          : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source   : [Pel09]
% Names    : synth_qa07_007_mira_wp_483_tptp [Pel09]

% Status   : Theorem
% Rating   : 0.40 v9.0.0, 0.25 v8.2.0, 0.27 v8.1.0, 0.29 v7.5.0, 0.38 v7.4.0, 0.25 v7.3.0, 0.29 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.21 v6.3.0, 0.23 v6.2.0, 0.36 v6.1.0, 0.40 v6.0.0, 0.50 v5.5.0, 0.46 v5.4.0, 0.43 v5.3.0, 0.52 v5.2.0, 0.36 v5.0.0, 0.40 v4.1.0, 0.39 v4.0.1, 0.47 v4.0.0
% Syntax   : Number of formulae    : 10189 (10061 unt;   0 def)
%            Number of atoms       : 10838 (   0 equ)
%            Maximal formula atoms :  131 (   1 avg)
%            Number of connectives :  649 (   0   ~;  18   |; 505   &)
%                                         (   0 <=>; 126  =>;   0  <=;   0 <~>)
%            Maximal formula depth :  131 (   1 avg)
%            Maximal term depth    :    5 (   1 avg)
%            Number of predicates  :   87 (  87 usr;   0 prp; 2-7 aty)
%            Number of functors    : 16650 (16650 usr;16649 con; 0-2 aty)
%            Number of variables   :  475 ( 405   !;  70   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : The different versions of this problem stem from the use of
%            different text snippet retrieval modules, and different snippets
%            being found. The problem tries to prove the questions from the
%            snippet and the background knowledge.
%------------------------------------------------------------------------------
%----Include LogAnswer axioms
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_007_mira_wp_483,conjecture,
    ? [X0,X1,X2,X3,X4,X5,X6] :
      ( attr(X0,X1)
      & attr(X3,X2)
      & attr(X5,X6)
      & obj(X4,X0)
      & sub(X1,name_1_1)
      & sub(X0,firma_1_1)
      & sub(X2,name_1_1)
      & val(X1,bmw_0)
      & val(X2,bmw_0) ) ).

fof(ave07_era5_synth_qa07_007_mira_wp_483,hypothesis,
    ( sub(c3850,firma_1_1)
    & attr(c4104,c4105)
    & sub(c4104,firma_1_1)
    & sub(c4105,name_1_1)
    & val(c4105,bmw_0)
    & sub(c4112,bremse_1_1)
    & sub(c4112,s__374dbremse_1_1)
    & attr(c4127,c4128)
    & sub(c4127,mensch_1_1)
    & sub(c4128,familiename_1_1)
    & val(c4128,knorr_0)
    & tupl_p7(c6459,c3850,c3850,c4104,c4112,c4127,c4112)
    & assoc(s__374dbremse_1_1,sued_1_1)
    & sub(s__374dbremse_1_1,bremse_1_1)
    & sort(c3850,d)
    & sort(c3850,io)
    & card(c3850,int1)
    & etype(c3850,int0)
    & fact(c3850,real)
    & gener(c3850,sp)
    & quant(c3850,one)
    & refer(c3850,det)
    & varia(c3850,con)
    & sort(firma_1_1,d)
    & sort(firma_1_1,io)
    & card(firma_1_1,int1)
    & etype(firma_1_1,int0)
    & fact(firma_1_1,real)
    & gener(firma_1_1,ge)
    & quant(firma_1_1,one)
    & refer(firma_1_1,refer_c)
    & varia(firma_1_1,varia_c)
    & sort(c4104,d)
    & sort(c4104,io)
    & card(c4104,int1)
    & etype(c4104,int0)
    & fact(c4104,real)
    & gener(c4104,sp)
    & quant(c4104,one)
    & refer(c4104,det)
    & varia(c4104,con)
    & sort(c4105,na)
    & card(c4105,int1)
    & etype(c4105,int0)
    & fact(c4105,real)
    & gener(c4105,sp)
    & quant(c4105,one)
    & refer(c4105,indet)
    & varia(c4105,varia_c)
    & sort(name_1_1,na)
    & card(name_1_1,int1)
    & etype(name_1_1,int0)
    & fact(name_1_1,real)
    & gener(name_1_1,ge)
    & quant(name_1_1,one)
    & refer(name_1_1,refer_c)
    & varia(name_1_1,varia_c)
    & sort(bmw_0,fe)
    & sort(c4112,d)
    & card(c4112,int1)
    & etype(c4112,int0)
    & fact(c4112,real)
    & gener(c4112,sp)
    & quant(c4112,one)
    & refer(c4112,det)
    & varia(c4112,con)
    & sort(bremse_1_1,d)
    & card(bremse_1_1,int1)
    & etype(bremse_1_1,int0)
    & fact(bremse_1_1,real)
    & gener(bremse_1_1,ge)
    & quant(bremse_1_1,one)
    & refer(bremse_1_1,refer_c)
    & varia(bremse_1_1,varia_c)
    & sort(s__374dbremse_1_1,d)
    & card(s__374dbremse_1_1,int1)
    & etype(s__374dbremse_1_1,int0)
    & fact(s__374dbremse_1_1,real)
    & gener(s__374dbremse_1_1,ge)
    & quant(s__374dbremse_1_1,one)
    & refer(s__374dbremse_1_1,refer_c)
    & varia(s__374dbremse_1_1,varia_c)
    & sort(c4127,d)
    & card(c4127,int1)
    & etype(c4127,int0)
    & fact(c4127,real)
    & gener(c4127,sp)
    & quant(c4127,one)
    & refer(c4127,det)
    & varia(c4127,con)
    & sort(c4128,na)
    & card(c4128,int1)
    & etype(c4128,int0)
    & fact(c4128,real)
    & gener(c4128,sp)
    & quant(c4128,one)
    & refer(c4128,indet)
    & varia(c4128,varia_c)
    & sort(mensch_1_1,d)
    & card(mensch_1_1,int1)
    & etype(mensch_1_1,int0)
    & fact(mensch_1_1,real)
    & gener(mensch_1_1,ge)
    & quant(mensch_1_1,one)
    & refer(mensch_1_1,refer_c)
    & varia(mensch_1_1,varia_c)
    & sort(familiename_1_1,na)
    & card(familiename_1_1,int1)
    & etype(familiename_1_1,int0)
    & fact(familiename_1_1,real)
    & gener(familiename_1_1,ge)
    & quant(familiename_1_1,one)
    & refer(familiename_1_1,refer_c)
    & varia(familiename_1_1,varia_c)
    & sort(knorr_0,fe)
    & sort(c6459,ent)
    & card(c6459,card_c)
    & etype(c6459,etype_c)
    & fact(c6459,real)
    & gener(c6459,gener_c)
    & quant(c6459,quant_c)
    & refer(c6459,refer_c)
    & varia(c6459,varia_c)
    & sort(sued_1_1,oa)
    & card(sued_1_1,int1)
    & etype(sued_1_1,int0)
    & fact(sued_1_1,real)
    & gener(sued_1_1,ge)
    & quant(sued_1_1,one)
    & refer(sued_1_1,refer_c)
    & varia(sued_1_1,varia_c) ) ).

%------------------------------------------------------------------------------