TPTP Problem File: CSR115+57.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : CSR115+57 : TPTP v9.0.0. Released v4.0.0.
% Domain   : Commonsense Reasoning
% Problem  : Which British company was taken over by BMW in 1994?
% Version  : [Pel09] axioms.
% English  :

% Refs     : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
%          : [PW07]  Pelzer & Wernhard (2007), System Description: E-KRHype
%          : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
%          : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source   : [Pel09]
% Names    : synth_qa07_007_mira_news_1315_a19984_tptp [Pel09]

% Status   : Theorem
% Rating   : 0.47 v9.0.0, 0.25 v8.2.0, 0.27 v8.1.0, 0.36 v7.5.0, 0.43 v7.4.0, 0.31 v7.3.0, 0.29 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.36 v6.4.0, 0.21 v6.3.0, 0.31 v6.2.0, 0.45 v6.1.0, 0.64 v6.0.0, 0.50 v5.5.0, 0.62 v5.4.0, 0.61 v5.3.0, 0.70 v5.2.0, 0.43 v5.0.0, 0.55 v4.1.0, 0.67 v4.0.1, 0.63 v4.0.0
% Syntax   : Number of formulae    : 10189 (10061 unt;   0 def)
%            Number of atoms       : 10902 (   0 equ)
%            Maximal formula atoms :  198 (   1 avg)
%            Number of connectives :  713 (   0   ~;  18   |; 569   &)
%                                         (   0 <=>; 126  =>;   0  <=;   0 <~>)
%            Maximal formula depth :  198 (   1 avg)
%            Maximal term depth    :    5 (   1 avg)
%            Number of predicates  :   87 (  87 usr;   0 prp; 2-3 aty)
%            Number of functors    : 16657 (16657 usr;16656 con; 0-2 aty)
%            Number of variables   :  474 ( 405   !;  69   ?)
% SPC      : FOF_THM_RFO_NEQ

% Comments : The different versions of this problem stem from the use of
%            different text snippet retrieval modules, and different snippets
%            being found. The problem tries to prove the questions from the
%            snippet and the background knowledge.
%------------------------------------------------------------------------------
%----Include LogAnswer axioms
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_007_mira_news_1315_a19984,conjecture,
    ? [X0,X1,X2,X3,X4,X5] :
      ( attr(X2,X1)
      & attr(X4,X5)
      & obj(X3,X0)
      & sub(X0,firma_1_1)
      & sub(X1,name_1_1)
      & val(X1,bmw_0) ) ).

fof(ave07_era5_synth_qa07_007_mira_news_1315_a19984,hypothesis,
    ( assoc(autobauer_1_1,auto__1_1)
    & sub(autobauer_1_1,fabrikant_1_1)
    & attr(c1000,c1001)
    & prop(c1000,britisch__1_1)
    & sub(c1000,autobauer_1_1)
    & sub(c1001,name_1_1)
    & val(c1001,rover_0)
    & attr(c1070,c1071)
    & sub(c1070,firma_1_1)
    & sub(c1071,name_1_1)
    & val(c1071,bmw_0)
    & attr(c1077,c1078)
    & sub(c1077,land_1_1)
    & sub(c1078,name_1_1)
    & val(c1078,england_0)
    & prop(c1082,politisch__1_1)
    & prop(c1082,scharf_1_1)
    & subs(c1082,kontroverse_1_1)
    & cstr(c1088,c975)
    & loc(c1088,c1092)
    & rslt(c1088,c1082)
    & subs(c1088,ausl__366sen_1_1)
    & in(c1092,c1077)
    & cstr(c975,c1082)
    & obj(c975,c1000)
    & ornt(c975,c1070)
    & prop(c975,unerwartet_1_1)
    & subs(c975,absatz_1_2)
    & assoc(politisch__1_1,politik_1_1)
    & chsp1(n374berraschen_1_1,unerwartet_1_1)
    & sort(autobauer_1_1,d)
    & sort(autobauer_1_1,io)
    & card(autobauer_1_1,int1)
    & etype(autobauer_1_1,int0)
    & fact(autobauer_1_1,real)
    & gener(autobauer_1_1,ge)
    & quant(autobauer_1_1,one)
    & refer(autobauer_1_1,refer_c)
    & varia(autobauer_1_1,varia_c)
    & sort(auto__1_1,d)
    & card(auto__1_1,int1)
    & etype(auto__1_1,int0)
    & fact(auto__1_1,real)
    & gener(auto__1_1,ge)
    & quant(auto__1_1,one)
    & refer(auto__1_1,refer_c)
    & varia(auto__1_1,varia_c)
    & sort(fabrikant_1_1,d)
    & sort(fabrikant_1_1,io)
    & card(fabrikant_1_1,int1)
    & etype(fabrikant_1_1,int0)
    & fact(fabrikant_1_1,real)
    & gener(fabrikant_1_1,ge)
    & quant(fabrikant_1_1,one)
    & refer(fabrikant_1_1,refer_c)
    & varia(fabrikant_1_1,varia_c)
    & sort(c1000,d)
    & sort(c1000,io)
    & card(c1000,int1)
    & etype(c1000,int0)
    & fact(c1000,real)
    & gener(c1000,sp)
    & quant(c1000,one)
    & refer(c1000,det)
    & varia(c1000,con)
    & sort(c1001,na)
    & card(c1001,int1)
    & etype(c1001,int0)
    & fact(c1001,real)
    & gener(c1001,sp)
    & quant(c1001,one)
    & refer(c1001,indet)
    & varia(c1001,varia_c)
    & sort(britisch__1_1,nq)
    & sort(name_1_1,na)
    & card(name_1_1,int1)
    & etype(name_1_1,int0)
    & fact(name_1_1,real)
    & gener(name_1_1,ge)
    & quant(name_1_1,one)
    & refer(name_1_1,refer_c)
    & varia(name_1_1,varia_c)
    & sort(rover_0,fe)
    & sort(c1070,d)
    & sort(c1070,io)
    & card(c1070,int1)
    & etype(c1070,int0)
    & fact(c1070,real)
    & gener(c1070,sp)
    & quant(c1070,one)
    & refer(c1070,det)
    & varia(c1070,con)
    & sort(c1071,na)
    & card(c1071,int1)
    & etype(c1071,int0)
    & fact(c1071,real)
    & gener(c1071,sp)
    & quant(c1071,one)
    & refer(c1071,indet)
    & varia(c1071,varia_c)
    & sort(firma_1_1,d)
    & sort(firma_1_1,io)
    & card(firma_1_1,int1)
    & etype(firma_1_1,int0)
    & fact(firma_1_1,real)
    & gener(firma_1_1,ge)
    & quant(firma_1_1,one)
    & refer(firma_1_1,refer_c)
    & varia(firma_1_1,varia_c)
    & sort(bmw_0,fe)
    & sort(c1077,d)
    & sort(c1077,io)
    & card(c1077,int1)
    & etype(c1077,int0)
    & fact(c1077,real)
    & gener(c1077,sp)
    & quant(c1077,one)
    & refer(c1077,det)
    & varia(c1077,con)
    & sort(c1078,na)
    & card(c1078,int1)
    & etype(c1078,int0)
    & fact(c1078,real)
    & gener(c1078,sp)
    & quant(c1078,one)
    & refer(c1078,indet)
    & varia(c1078,varia_c)
    & sort(land_1_1,d)
    & sort(land_1_1,io)
    & card(land_1_1,int1)
    & etype(land_1_1,int0)
    & fact(land_1_1,real)
    & gener(land_1_1,ge)
    & quant(land_1_1,one)
    & refer(land_1_1,refer_c)
    & varia(land_1_1,varia_c)
    & sort(england_0,fe)
    & sort(c1082,ad)
    & card(c1082,int1)
    & etype(c1082,int0)
    & fact(c1082,real)
    & gener(c1082,sp)
    & quant(c1082,one)
    & refer(c1082,indet)
    & varia(c1082,varia_c)
    & sort(politisch__1_1,tq)
    & sort(scharf_1_1,nq)
    & sort(kontroverse_1_1,ad)
    & card(kontroverse_1_1,int1)
    & etype(kontroverse_1_1,int0)
    & fact(kontroverse_1_1,real)
    & gener(kontroverse_1_1,ge)
    & quant(kontroverse_1_1,one)
    & refer(kontroverse_1_1,refer_c)
    & varia(kontroverse_1_1,varia_c)
    & sort(c1088,dn)
    & fact(c1088,real)
    & gener(c1088,sp)
    & sort(c975,ad)
    & card(c975,int1)
    & etype(c975,int0)
    & fact(c975,real)
    & gener(c975,sp)
    & quant(c975,one)
    & refer(c975,det)
    & varia(c975,con)
    & sort(c1092,l)
    & card(c1092,int1)
    & etype(c1092,int0)
    & fact(c1092,real)
    & gener(c1092,sp)
    & quant(c1092,one)
    & refer(c1092,det)
    & varia(c1092,con)
    & sort(ausl__366sen_1_1,dn)
    & fact(ausl__366sen_1_1,real)
    & gener(ausl__366sen_1_1,ge)
    & sort(unerwartet_1_1,nq)
    & sort(absatz_1_2,ad)
    & card(absatz_1_2,int1)
    & etype(absatz_1_2,int0)
    & fact(absatz_1_2,real)
    & gener(absatz_1_2,ge)
    & quant(absatz_1_2,one)
    & refer(absatz_1_2,refer_c)
    & varia(absatz_1_2,varia_c)
    & sort(politik_1_1,ad)
    & sort(politik_1_1,io)
    & card(politik_1_1,int1)
    & etype(politik_1_1,int0)
    & fact(politik_1_1,real)
    & gener(politik_1_1,ge)
    & quant(politik_1_1,one)
    & refer(politik_1_1,refer_c)
    & varia(politik_1_1,varia_c)
    & sort(n374berraschen_1_1,dn)
    & fact(n374berraschen_1_1,real)
    & gener(n374berraschen_1_1,ge) ) ).

%------------------------------------------------------------------------------