TPTP Problem File: CSR015+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CSR015+1 : TPTP v9.0.0. Bugfixed v3.1.0.
% Domain : Commonsense Reasoning
% Problem : Not backwards at time 1
% Version : [Mue04] axioms : Especial.
% English :
% Refs : [MS05] Mueller & Sutcliffe (2005), Reasoning in the Event Cal
% : [Mue04] Mueller (2004), A Tool for Satisfiability-based Common
% : [MS02] Miller & Shanahan (2002), Some Alternative Formulation
% Source : [MS05]
% Names :
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.22 v8.1.0, 0.25 v7.5.0, 0.28 v7.4.0, 0.23 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.13 v6.4.0, 0.19 v6.3.0, 0.12 v6.2.0, 0.24 v6.1.0, 0.30 v6.0.0, 0.17 v5.5.0, 0.26 v5.4.0, 0.29 v5.3.0, 0.33 v5.2.0, 0.20 v5.1.0, 0.19 v5.0.0, 0.25 v4.1.0, 0.26 v4.0.1, 0.30 v4.0.0, 0.29 v3.7.0, 0.25 v3.5.0, 0.21 v3.4.0, 0.26 v3.3.0, 0.36 v3.1.0
% Syntax : Number of formulae : 48 ( 22 unt; 0 def)
% Number of atoms : 138 ( 43 equ)
% Maximal formula atoms : 19 ( 2 avg)
% Number of connectives : 123 ( 33 ~; 13 |; 51 &)
% ( 16 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 13 ( 12 usr; 0 prp; 2-4 aty)
% Number of functors : 16 ( 16 usr; 15 con; 0-2 aty)
% Number of variables : 73 ( 64 !; 9 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%--------------------------------------------------------------------------
%----Include standard discrete event calculus axioms
include('Axioms/CSR001+0.ax').
%----Include supermarket trolley axioms
include('Axioms/CSR001+2.ax').
%--------------------------------------------------------------------------
fof(plus0_0,axiom,
plus(n0,n0) = n0 ).
fof(plus0_1,axiom,
plus(n0,n1) = n1 ).
fof(plus0_2,axiom,
plus(n0,n2) = n2 ).
fof(plus0_3,axiom,
plus(n0,n3) = n3 ).
fof(plus1_1,axiom,
plus(n1,n1) = n2 ).
fof(plus1_2,axiom,
plus(n1,n2) = n3 ).
fof(plus1_3,axiom,
plus(n1,n3) = n4 ).
fof(plus2_2,axiom,
plus(n2,n2) = n4 ).
fof(plus2_3,axiom,
plus(n2,n3) = n5 ).
fof(plus3_3,axiom,
plus(n3,n3) = n6 ).
fof(symmetry_of_plus,axiom,
! [X,Y] : plus(X,Y) = plus(Y,X) ).
fof(less_or_equal,axiom,
! [X,Y] :
( less_or_equal(X,Y)
<=> ( less(X,Y)
| X = Y ) ) ).
fof(less0,axiom,
~ ? [X] : less(X,n0) ).
fof(less1,axiom,
! [X] :
( less(X,n1)
<=> less_or_equal(X,n0) ) ).
fof(less2,axiom,
! [X] :
( less(X,n2)
<=> less_or_equal(X,n1) ) ).
fof(less3,axiom,
! [X] :
( less(X,n3)
<=> less_or_equal(X,n2) ) ).
fof(less4,axiom,
! [X] :
( less(X,n4)
<=> less_or_equal(X,n3) ) ).
fof(less5,axiom,
! [X] :
( less(X,n5)
<=> less_or_equal(X,n4) ) ).
fof(less6,axiom,
! [X] :
( less(X,n6)
<=> less_or_equal(X,n5) ) ).
fof(less7,axiom,
! [X] :
( less(X,n7)
<=> less_or_equal(X,n6) ) ).
fof(less8,axiom,
! [X] :
( less(X,n8)
<=> less_or_equal(X,n7) ) ).
fof(less9,axiom,
! [X] :
( less(X,n9)
<=> less_or_equal(X,n8) ) ).
fof(less_property,axiom,
! [X,Y] :
( less(X,Y)
<=> ( ~ less(Y,X)
& Y != X ) ) ).
%----Initial conditions
fof(not_forwards_0,hypothesis,
~ holdsAt(forwards,n0) ).
fof(not_backwards_0,hypothesis,
~ holdsAt(backwards,n0) ).
fof(not_splinning_0,hypothesis,
~ holdsAt(spinning,n0) ).
fof(not_releasedAt,hypothesis,
! [Fluent,Time] : ~ releasedAt(Fluent,Time) ).
fof(not_backwards_1,conjecture,
~ holdsAt(backwards,n1) ).
%--------------------------------------------------------------------------