TPTP Problem File: COM008+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM008+1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Computing Theory
% Problem : Induction step in Newman's Lemma
% Version : Especial > Reduced > Especial.
% English :
% Refs : [Bez05] Bezem (2005), Email to Geoff Sutcliffe
% Source : [Bez05]
% Names : nl [Bez05]
% Status : Theorem
% Rating : 0.27 v9.0.0, 0.19 v8.2.0, 0.13 v8.1.0, 0.29 v7.5.0, 0.43 v7.4.0, 0.12 v7.3.0, 0.14 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.29 v6.3.0, 0.31 v6.2.0, 0.36 v6.1.0, 0.56 v6.0.0, 0.50 v5.5.0, 0.62 v5.4.0, 0.61 v5.3.0, 0.70 v5.2.0, 0.43 v5.0.0, 0.60 v4.1.0, 0.61 v4.0.1, 0.58 v4.0.0, 0.60 v3.7.0, 0.00 v3.5.0, 0.25 v3.4.0, 0.58 v3.3.0, 0.67 v3.2.0
% Syntax : Number of formulae : 11 ( 2 unt; 0 def)
% Number of atoms : 29 ( 0 equ)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 18 ( 0 ~; 1 |; 9 &)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 22 ( 19 !; 3 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(found,axiom,
! [A] :
( ( transitive_reflexive_rewrite(b,A)
& transitive_reflexive_rewrite(c,A) )
=> goal ) ).
fof(assumption,axiom,
( transitive_reflexive_rewrite(a,b)
& transitive_reflexive_rewrite(a,c) ) ).
fof(reflexivity,axiom,
! [A] : equalish(A,A) ).
fof(symmetry,axiom,
! [A,B] :
( equalish(A,B)
=> equalish(B,A) ) ).
fof(equality_in_transitive_reflexive_rewrite,axiom,
! [A,B] :
( equalish(A,B)
=> transitive_reflexive_rewrite(A,B) ) ).
fof(rewrite_in_transitive_reflexive_rewrite,axiom,
! [A,B] :
( rewrite(A,B)
=> transitive_reflexive_rewrite(A,B) ) ).
fof(transitivity_of_transitive_reflexive_rewrite,axiom,
! [A,B,C] :
( ( transitive_reflexive_rewrite(A,B)
& transitive_reflexive_rewrite(B,C) )
=> transitive_reflexive_rewrite(A,C) ) ).
fof(lo_cfl,axiom,
! [A,B,C] :
( ( rewrite(A,B)
& rewrite(A,C) )
=> ? [D] :
( transitive_reflexive_rewrite(B,D)
& transitive_reflexive_rewrite(C,D) ) ) ).
fof(ih_cfl,axiom,
! [A,B,C] :
( ( rewrite(a,A)
& transitive_reflexive_rewrite(A,B)
& transitive_reflexive_rewrite(A,C) )
=> ? [D] :
( transitive_reflexive_rewrite(B,D)
& transitive_reflexive_rewrite(C,D) ) ) ).
fof(equalish_or_rewrite,axiom,
! [A,B] :
( transitive_reflexive_rewrite(A,B)
=> ( equalish(A,B)
| ? [C] :
( rewrite(A,C)
& transitive_reflexive_rewrite(C,B) ) ) ) ).
fof(goal_to_be_proved,conjecture,
goal ).
%------------------------------------------------------------------------------