TPTP Problem File: COM002_10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM002_10 : TPTP v9.0.0. Released v8.2.0.
% Domain : Computing Theory
% Problem : A program correctness theorem.
% Version : COM002_1 with the conjecture removed
% English : A computing state space, with eight states - P1 to P8.
% P1 leads to P3 via P2. There is a branch at P3 such that the
% following state is either P4 or P6. P6 leads to P8, which has
% a loop back to P3, while P4 leads to termination. The problem
% is to show that there is a loop in the computation, passing
% through P3.
% Refs : [RR+72] Reboh et al. (1972), Study of automatic theorem provin
% Source : [TPTP]
% Names :
% Status : Satisfiable
% Rating : 0.00 v8.2.0
% Syntax : Number of formulae : 50 ( 14 unt; 32 typ; 0 def)
% Number of atoms : 24 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of types : 7 ( 6 usr)
% Number of type conns : 19 ( 10 >; 9 *; 0 +; 0 <<)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 22 ( 22 usr; 16 con; 0-2 aty)
% Number of variables : 11 ( 11 !; 0 ?; 11 :)
% SPC : TF0_SAT_NEQ_NAR
% Comments : I suspect this problem was originally by R.M. Burstall.
%------------------------------------------------------------------------------
tff(state_type,type,
state: $tType ).
tff(label_type,type,
label: $tType ).
tff(statement_type,type,
statement: $tType ).
tff(register_type,type,
register: $tType ).
tff(number_type,type,
number: $tType ).
tff(boolean_type,type,
boolean: $tType ).
tff(p1_type,type,
p1: state ).
tff(p2_type,type,
p2: state ).
tff(p3_type,type,
p3: state ).
tff(p4_type,type,
p4: state ).
tff(p5_type,type,
p5: state ).
tff(p6_type,type,
p6: state ).
tff(p7_type,type,
p7: state ).
tff(p8_type,type,
p8: state ).
tff(n_type,type,
n: number ).
tff(n0_type,type,
n0: number ).
tff(n1_type,type,
n1: number ).
tff(n2_type,type,
n2: number ).
tff(register_j_type,type,
register_j: register ).
tff(register_k_type,type,
register_k: register ).
tff(out_type,type,
out: label ).
tff(loop_type,type,
loop: label ).
tff(equal_function_type,type,
equal_function: ( register * number ) > boolean ).
tff(assign_type,type,
assign: ( register * number ) > statement ).
tff(goto_type,type,
goto: label > statement ).
tff(ifthen_type,type,
ifthen: ( boolean * state ) > statement ).
tff(plus_type,type,
plus: ( register * number ) > number ).
tff(times_type,type,
times: ( number * register ) > number ).
tff(follows_type,type,
follows: ( state * state ) > $o ).
tff(succeeds_type,type,
succeeds: ( state * state ) > $o ).
tff(labels_type,type,
labels: ( label * state ) > $o ).
tff(has_type,type,
has: ( state * statement ) > $o ).
tff(direct_success,axiom,
! [Start_state: state,Goal_state: state] :
( follows(Goal_state,Start_state)
=> succeeds(Goal_state,Start_state) ) ).
tff(transitivity_of_success,axiom,
! [Start_state: state,Intermediate_state: state,Goal_state: state] :
( ( succeeds(Goal_state,Intermediate_state)
& succeeds(Intermediate_state,Start_state) )
=> succeeds(Goal_state,Start_state) ) ).
tff(goto_success,axiom,
! [Goal_state: state,Label: label,Start_state: state] :
( ( has(Start_state,goto(Label))
& labels(Label,Goal_state) )
=> succeeds(Goal_state,Start_state) ) ).
tff(conditional_success,axiom,
! [Goal_state: state,Condition: boolean,Start_state: state] :
( has(Start_state,ifthen(Condition,Goal_state))
=> succeeds(Goal_state,Start_state) ) ).
tff(state_1,hypothesis,
has(p1,assign(register_j,n0)) ).
tff(transition_1_to_2,hypothesis,
follows(p2,p1) ).
tff(state_2,hypothesis,
has(p2,assign(register_k,n1)) ).
tff(label_state_3,hypothesis,
labels(loop,p3) ).
tff(transition_2_to_3,hypothesis,
follows(p3,p2) ).
tff(state_3,hypothesis,
has(p3,ifthen(equal_function(register_j,n),p4)) ).
tff(state_4,hypothesis,
has(p4,goto(out)) ).
tff(transition_4_to_5,hypothesis,
follows(p5,p4) ).
tff(transition_3_to_6,hypothesis,
follows(p6,p3) ).
tff(state_6,hypothesis,
has(p6,assign(register_k,times(n2,register_k))) ).
tff(transition_6_to_7,hypothesis,
follows(p7,p6) ).
tff(state_7,hypothesis,
has(p7,assign(register_j,plus(register_j,n1))) ).
tff(transition_7_to_8,hypothesis,
follows(p8,p7) ).
tff(state_8,hypothesis,
has(p8,goto(loop)) ).
% tff(prove_there_is_a_loop_through_p3,conjecture,
% succeeds(p3,p3) ).
%------------------------------------------------------------------------------