TPTP Problem File: COL049-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL049-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for B, W, and M
% Version : [WM88] (equality) axioms.
% English : The strong fixed point property holds for the set
% P consisting of the combinators B, W, and M, where ((Bx)y)z
% = x(yz), (Wx)y = (xy)y, Mx = xx.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
% : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
% Source : [Ove90]
% Names : Problem 2 [WM88]
% : CADE-11 Competition Eq-6 [Ove90]
% : CL1 [LW92]
% : THEOREM EQ-6 [LM93]
% : Question 2 [Wos93]
% : PROBLEM 6 [Zha93]
% Status : Unsatisfiable
% Rating : 0.36 v8.2.0, 0.42 v8.1.0, 0.40 v7.5.0, 0.46 v7.4.0, 0.52 v7.3.0, 0.47 v7.2.0, 0.53 v7.1.0, 0.44 v7.0.0, 0.42 v6.3.0, 0.41 v6.2.0, 0.43 v6.1.0, 0.44 v6.0.0, 0.57 v5.5.0, 0.53 v5.3.0, 0.50 v5.2.0, 0.43 v5.1.0, 0.47 v5.0.0, 0.50 v4.1.0, 0.36 v4.0.1, 0.43 v4.0.0, 0.46 v3.7.0, 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.1.0, 0.44 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.14 v2.1.0, 0.62 v2.0.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(w_definition,axiom,
apply(apply(w,X),Y) = apply(apply(X,Y),Y) ).
cnf(m_definition,axiom,
apply(m,X) = apply(X,X) ).
cnf(prove_strong_fixed_point,negated_conjecture,
apply(Y,f(Y)) != apply(f(Y),apply(Y,f(Y))) ).
%--------------------------------------------------------------------------