TPTP Problem File: COL043-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL043-3 : TPTP v9.0.0. Bugfixed v2.3.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for B and H
% Version : [WM88] (equality) axioms.
% Theorem formulation : The fixed point is provided and checked.
% English : The strong fixed point property holds for the set
% P consisting of the combinators B and H, where ((Bx)y)z
% = x(yz), ((Hx)y)z = ((xy)z)y.
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% Source : [TPTP]
% Names : - [Wos93]
% Status : Unsatisfiable
% Rating : 0.50 v9.0.0, 0.55 v8.2.0, 0.62 v8.1.0, 0.75 v7.5.0, 0.83 v7.4.0, 0.87 v7.3.0, 0.89 v6.3.0, 0.88 v6.2.0, 0.86 v6.1.0, 0.88 v6.0.0, 0.90 v5.5.0, 0.89 v5.4.0, 0.87 v5.3.0, 0.83 v5.2.0, 0.86 v5.1.0, 0.87 v5.0.0, 0.86 v4.1.0, 0.82 v4.0.1, 0.79 v4.0.0, 0.77 v3.7.0, 0.67 v3.4.0, 0.75 v3.3.0, 0.79 v3.2.0, 0.71 v3.1.0, 0.78 v2.7.0, 1.00 v2.6.0, 0.83 v2.5.0, 0.75 v2.4.0, 0.67 v2.3.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 11 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
% Bugfixes : v2.3.0 - Clause strong_fixed_point fixed.
%--------------------------------------------------------------------------
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(h_definition,axiom,
apply(apply(apply(h,X),Y),Z) = apply(apply(apply(X,Y),Z),Y) ).
cnf(strong_fixed_point,axiom,
strong_fixed_point = apply(apply(b,apply(apply(b,apply(apply(h,apply(apply(b,apply(apply(b,h),apply(b,b))),apply(h,apply(apply(b,h),apply(b,b))))),h)),b)),b) ).
cnf(prove_strong_fixed_point,negated_conjecture,
apply(strong_fixed_point,fixed_pt) != apply(fixed_pt,apply(strong_fixed_point,fixed_pt)) ).
%--------------------------------------------------------------------------