TPTP Problem File: COL042-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COL042-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : Strong fixed point for B and W1
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.82 v8.2.0, 0.88 v8.1.0, 0.90 v7.5.0, 0.92 v7.4.0, 0.91 v7.3.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-4 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from COL042-4 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(w1_definition,axiom,
apply(apply(w1,X),Y) = apply(apply(Y,X),X) ).
cnf(strong_fixed_point,axiom,
ifeq(apply(Strong_fixed_point,fixed_pt),apply(fixed_pt,apply(Strong_fixed_point,fixed_pt)),fixed_point(Strong_fixed_point),true) = true ).
cnf(prove_strong_fixed_point,negated_conjecture,
fixed_point(apply(apply(b,apply(apply(b,apply(w1,w1)),apply(apply(b,apply(b,w1)),b))),b)) != true ).
%------------------------------------------------------------------------------