TPTP Problem File: COL032-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL032-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for Q and M
% Version : [WM88] (equality) axioms.
% English : The strong fixed point property holds for the set
% P consisting of the combinators Q and M, where Mx = xx,
% ((Qx)y)z = y(xz).
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
% : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb
% Source : [MW88]
% Names : - [MW88]
% Status : Unsatisfiable
% Rating : 0.18 v8.2.0, 0.25 v8.1.0, 0.30 v7.5.0, 0.29 v7.4.0, 0.35 v7.3.0, 0.32 v7.1.0, 0.28 v7.0.0, 0.26 v6.3.0, 0.29 v6.1.0, 0.19 v6.0.0, 0.29 v5.5.0, 0.21 v5.4.0, 0.20 v5.3.0, 0.17 v5.2.0, 0.14 v5.1.0, 0.20 v5.0.0, 0.21 v4.1.0, 0.18 v4.0.1, 0.21 v4.0.0, 0.23 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.14 v3.1.0, 0.22 v2.7.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.00 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(m_definition,axiom,
apply(m,X) = apply(X,X) ).
cnf(q_definition,axiom,
apply(apply(apply(q,X),Y),Z) = apply(Y,apply(X,Z)) ).
cnf(prove_fixed_point,negated_conjecture,
apply(Y,f(Y)) != apply(f(Y),apply(Y,f(Y))) ).
%--------------------------------------------------------------------------