TPTP Problem File: COL003-13.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL003-13 : TPTP v9.0.0. Released v2.1.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for B and W
% Version : [WM88] (equality) axioms.
% Theorem formulation : The fixed point is provided and checked.
% English : The strong fixed point property holds for the set
% P consisting of the combinators B and W alone, where ((Bx)y)z
% = x(yz) and (Wx)y = (xy)y.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
% : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% Source : [TPTP]
% Names : K sage [MW87]
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.14 v8.2.0, 0.21 v8.1.0, 0.20 v7.5.0, 0.21 v7.4.0, 0.30 v7.3.0, 0.21 v7.1.0, 0.11 v7.0.0, 0.16 v6.4.0, 0.21 v6.3.0, 0.24 v6.2.0, 0.21 v6.1.0, 0.25 v6.0.0, 0.33 v5.5.0, 0.32 v5.4.0, 0.27 v5.3.0, 0.17 v5.2.0, 0.21 v5.1.0, 0.13 v5.0.0, 0.21 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.09 v2.6.0, 0.00 v2.2.1, 0.25 v2.2.0, 0.40 v2.1.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(w_definition,axiom,
apply(apply(w,X),Y) = apply(apply(X,Y),Y) ).
cnf(strong_fixed_point,axiom,
strong_fixed_point = apply(apply(b,apply(w,w)),apply(apply(b,apply(apply(b,w),b)),b)) ).
cnf(prove_strong_fixed_point,negated_conjecture,
apply(strong_fixed_point,fixed_pt) != apply(fixed_pt,apply(strong_fixed_point,fixed_pt)) ).
%--------------------------------------------------------------------------