TPTP Problem File: COL002-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL002-5 : TPTP v9.0.0. Bugfixed v3.1.0.
% Domain : Combinatory Logic
% Problem : Weak fixed point for S, B, C, and I
% Version : [WM88] (equality) axioms.
% Theorem formulation : The fixed point is provided and checked.
% English : The weak fixed point property holds for the set P consisting
% of the combinators S, B, C, and I, where ((Sx)y)z = (xz)(yz),
% ((Bx)y)z = x(yz), ((Cx)y)z = (xz)y, and Ix = x.
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.45 v9.0.0, 0.41 v8.2.0, 0.42 v8.1.0, 0.45 v7.5.0, 0.42 v7.4.0, 0.35 v7.3.0, 0.42 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.41 v6.2.0, 0.43 v6.1.0, 0.50 v6.0.0, 0.57 v5.5.0, 0.53 v5.4.0, 0.67 v5.2.0, 0.64 v5.1.0, 0.53 v5.0.0, 0.57 v4.1.0, 0.45 v4.0.1, 0.57 v4.0.0, 0.54 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.43 v3.1.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : This is the one found in proof 3 of C1.1 in [WM88].
% Bugfixes : Fixed clauses weak_fixed_point and prove_weak_fixed_point.
%--------------------------------------------------------------------------
cnf(s_definition,axiom,
apply(apply(apply(s,X),Y),Z) = apply(apply(X,Z),apply(Y,Z)) ).
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(c_definition,axiom,
apply(apply(apply(c,X),Y),Z) = apply(apply(X,Z),Y) ).
cnf(i_definition,axiom,
apply(i,X) = X ).
cnf(weak_fixed_point,axiom,
weak_fixed_point(X) = apply(apply(apply(s,apply(c,apply(b,X))),apply(s,apply(c,apply(b,X)))),apply(s,apply(c,apply(b,X)))) ).
cnf(prove_weak_fixed_point,negated_conjecture,
weak_fixed_point(fixed_pt) != apply(fixed_pt,weak_fixed_point(fixed_pt)) ).
%--------------------------------------------------------------------------