TPTP Problem File: COL002-1.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : COL002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain   : Combinatory Logic
% Problem  : Weak fixed point for S, B, C, and I
% Version  : [WM88] (equality) axioms.
% English  : The weak fixed point property holds for the set P consisting
%            of the combinators S, B, C, and I, where ((Sx)y)z = (xz)(yz),
%            ((Bx)y)z = x(yz), ((Cx)y)z = (xz)y, and Ix = x.

% Refs     : [WM88]  Wos & McCune (1988), Challenge Problems Focusing on Eq
% Source   : [WM88]
% Names    : C1.1 [WM88]

% Status   : Unsatisfiable
% Rating   : 0.18 v8.2.0, 0.25 v7.4.0, 0.35 v7.3.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.16 v6.4.0, 0.21 v6.3.0, 0.18 v6.2.0, 0.14 v6.1.0, 0.06 v6.0.0, 0.14 v5.5.0, 0.11 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.07 v5.1.0, 0.20 v5.0.0, 0.21 v4.1.0, 0.27 v4.0.1, 0.21 v4.0.0, 0.23 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.1.0, 0.13 v2.0.0
% Syntax   : Number of clauses     :    5 (   5 unt;   0 nHn;   1 RR)
%            Number of literals    :    5 (   5 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    1 (   0 usr;   0 prp; 2-2 aty)
%            Number of functors    :    6 (   6 usr;   5 con; 0-2 aty)
%            Number of variables   :   11 (   0 sgn)
% SPC      : CNF_UNS_RFO_PEQ_UEQ

% Comments :
%--------------------------------------------------------------------------
cnf(s_definition,axiom,
    apply(apply(apply(s,X),Y),Z) = apply(apply(X,Z),apply(Y,Z)) ).

cnf(b_definition,axiom,
    apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).

cnf(c_definition,axiom,
    apply(apply(apply(c,X),Y),Z) = apply(apply(X,Z),Y) ).

cnf(i_definition,axiom,
    apply(i,X) = X ).

cnf(prove_fixed_point,negated_conjecture,
    Y != apply(fixed_pt,Y) ).

%--------------------------------------------------------------------------