TPTP Problem File: CAT038^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT038^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Syntactic
% Problem : Swapping function
% Version : Especial.
% English : The proposition can be interpreted in concrete categories and
% asserts the existence of a certain arrow.
% Refs : [Bro09] Brown E. (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names :
% Status : Theorem
% : Without choice : CounterSatisfiable
% : Without choice and with if-then-else : Theorem
% : Without choice and with description : Theorem
% Rating : 0.75 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.82 v7.5.0, 0.86 v7.4.0, 0.89 v7.3.0, 1.00 v4.1.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 1 &; 2 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 2 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 0 !; 1 ?; 1 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% : The fragment of simple type theory that restricts equations to
% base types and disallows lambda abstraction and quantification is
% decidable. This is an example.
%------------------------------------------------------------------------------
thf(a,type,
a: $i ).
thf(b,type,
b: $i ).
thf(swap,conjecture,
? [F: $i > $i] :
( ( ( F @ a )
= b )
& ( ( F @ b )
= a ) ) ).
%------------------------------------------------------------------------------