TPTP Problem File: CAT030+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : CAT030+1 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Category Theory
% Problem  : Some Isomorphisms Between Functor Categories T43
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Try92] Trybulec (1992), Some Isomorphisms Between Functor Cat
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t43_isocat_2 [Urb08]

% Status   : Theorem
% Rating   : 0.97 v9.0.0, 0.94 v8.2.0, 0.97 v8.1.0, 0.92 v7.5.0, 0.97 v7.4.0, 0.83 v7.0.0, 0.90 v6.4.0, 0.92 v6.1.0, 1.00 v6.0.0, 0.96 v5.3.0, 1.00 v3.4.0
% Syntax   : Number of formulae    :   65 (  23 unt;   0 def)
%            Number of atoms       :  237 (  16 equ)
%            Maximal formula atoms :   11 (   3 avg)
%            Number of connectives :  197 (  25   ~;   1   |; 110   &)
%                                         (   2 <=>;  59  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   6 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   15 (  13 usr;   1 prp; 0-4 aty)
%            Number of functors    :   19 (  19 usr;   1 con; 0-5 aty)
%            Number of variables   :  154 ( 144   !;  10   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%          : Infinox says this has no finite (counter-) models.
%------------------------------------------------------------------------------
fof(t43_isocat_2,conjecture,
    ! [A] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A) )
     => ! [B] :
          ( ( v2_cat_1(B)
            & l1_cat_1(B) )
         => ! [C] :
              ( ( v2_cat_1(C)
                & l1_cat_1(C) )
             => ! [D] :
                  ( m2_cat_1(D,A,B)
                 => ! [E] :
                      ( m2_cat_1(E,A,C)
                     => ! [F] :
                          ( m1_subset_1(F,u1_cat_1(A))
                         => k13_cat_1(A,k11_cat_2(B,C),k10_isocat_2(A,B,C,D,E),F) = k12_cat_2(B,C,k13_cat_1(A,B,D,F),k13_cat_1(A,C,E,F)) ) ) ) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
     => v1_relat_1(C) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).

fof(d5_tarski,axiom,
    ! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).

fof(dt_k10_cat_1,axiom,
    ! [A,B] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & m1_subset_1(B,u1_cat_1(A)) )
     => m1_cat_1(k10_cat_1(A,B),A,B,B) ) ).

fof(dt_k10_isocat_2,axiom,
    ! [A,B,C,D,E] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & v2_cat_1(C)
        & l1_cat_1(C)
        & m2_cat_1(D,A,B)
        & m2_cat_1(E,A,C) )
     => m2_cat_1(k10_isocat_2(A,B,C,D,E),A,k11_cat_2(B,C)) ) ).

fof(dt_k11_cat_2,axiom,
    ! [A,B] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B) )
     => ( v2_cat_1(k11_cat_2(A,B))
        & l1_cat_1(k11_cat_2(A,B)) ) ) ).

fof(dt_k12_cat_2,axiom,
    ! [A,B,C,D] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & m1_subset_1(C,u1_cat_1(A))
        & m1_subset_1(D,u1_cat_1(B)) )
     => m1_subset_1(k12_cat_2(A,B,C,D),u1_cat_1(k11_cat_2(A,B))) ) ).

fof(dt_k13_cat_1,axiom,
    ! [A,B,C,D] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & m2_cat_1(C,A,B)
        & m1_subset_1(D,u1_cat_1(A)) )
     => m1_subset_1(k13_cat_1(A,B,C,D),u1_cat_1(B)) ) ).

fof(dt_k13_cat_2,axiom,
    ! [A,B,C,D] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & m1_subset_1(C,u2_cat_1(A))
        & m1_subset_1(D,u2_cat_1(B)) )
     => m1_subset_1(k13_cat_2(A,B,C,D),u2_cat_1(k11_cat_2(A,B))) ) ).

fof(dt_k13_funct_3,axiom,
    ! [A,B] :
      ( ( v1_relat_1(A)
        & v1_funct_1(A)
        & v1_relat_1(B)
        & v1_funct_1(B) )
     => ( v1_relat_1(k13_funct_3(A,B))
        & v1_funct_1(k13_funct_3(A,B)) ) ) ).

fof(dt_k14_funct_3,axiom,
    ! [A,B,C,D,E] :
      ( ( ~ v1_xboole_0(B)
        & ~ v1_xboole_0(C)
        & v1_funct_1(D)
        & v1_funct_2(D,A,B)
        & m1_relset_1(D,A,B)
        & v1_funct_1(E)
        & v1_funct_2(E,A,C)
        & m1_relset_1(E,A,C) )
     => ( v1_funct_1(k14_funct_3(A,B,C,D,E))
        & v1_funct_2(k14_funct_3(A,B,C,D,E),A,k2_zfmisc_1(B,C))
        & m2_relset_1(k14_funct_3(A,B,C,D,E),A,k2_zfmisc_1(B,C)) ) ) ).

fof(dt_k1_funct_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_k5_cat_1,axiom,
    ! [A,B] :
      ( ( l1_cat_1(A)
        & m1_subset_1(B,u1_cat_1(A)) )
     => m1_subset_1(k5_cat_1(A,B),u2_cat_1(A)) ) ).

fof(dt_k8_funct_2,axiom,
    ! [A,B,C,D] :
      ( ( ~ v1_xboole_0(A)
        & v1_funct_1(C)
        & v1_funct_2(C,A,B)
        & m1_relset_1(C,A,B)
        & m1_subset_1(D,A) )
     => m1_subset_1(k8_funct_2(A,B,C,D),B) ) ).

fof(dt_l1_cat_1,axiom,
    $true ).

fof(dt_m1_cat_1,axiom,
    ! [A,B,C] :
      ( ( l1_cat_1(A)
        & m1_subset_1(B,u1_cat_1(A))
        & m1_subset_1(C,u1_cat_1(A)) )
     => ! [D] :
          ( m1_cat_1(D,A,B,C)
         => m1_subset_1(D,u2_cat_1(A)) ) ) ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_cat_1,axiom,
    ! [A,B] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B) )
     => ! [C] :
          ( m2_cat_1(C,A,B)
         => ( v1_funct_1(C)
            & v1_funct_2(C,u2_cat_1(A),u2_cat_1(B))
            & m2_relset_1(C,u2_cat_1(A),u2_cat_1(B)) ) ) ) ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
     => m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).

fof(dt_u1_cat_1,axiom,
    ! [A] :
      ( l1_cat_1(A)
     => ~ v1_xboole_0(u1_cat_1(A)) ) ).

fof(dt_u2_cat_1,axiom,
    ! [A] :
      ( l1_cat_1(A)
     => ~ v1_xboole_0(u2_cat_1(A)) ) ).

fof(existence_l1_cat_1,axiom,
    ? [A] : l1_cat_1(A) ).

fof(existence_m1_cat_1,axiom,
    ! [A,B,C] :
      ( ( l1_cat_1(A)
        & m1_subset_1(B,u1_cat_1(A))
        & m1_subset_1(C,u1_cat_1(A)) )
     => ? [D] : m1_cat_1(D,A,B,C) ) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : m1_relset_1(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(existence_m2_cat_1,axiom,
    ! [A,B] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B) )
     => ? [C] : m2_cat_1(C,A,B) ) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : m2_relset_1(C,A,B) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_xboole_0,axiom,
    v1_xboole_0(k1_xboole_0) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_tarski(A)) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : v1_xboole_0(A) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ v1_xboole_0(A) ).

fof(redefinition_k10_cat_1,axiom,
    ! [A,B] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & m1_subset_1(B,u1_cat_1(A)) )
     => k10_cat_1(A,B) = k5_cat_1(A,B) ) ).

fof(redefinition_k10_isocat_2,axiom,
    ! [A,B,C,D,E] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & v2_cat_1(C)
        & l1_cat_1(C)
        & m2_cat_1(D,A,B)
        & m2_cat_1(E,A,C) )
     => k10_isocat_2(A,B,C,D,E) = k13_funct_3(D,E) ) ).

fof(redefinition_k12_cat_2,axiom,
    ! [A,B,C,D] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & m1_subset_1(C,u1_cat_1(A))
        & m1_subset_1(D,u1_cat_1(B)) )
     => k12_cat_2(A,B,C,D) = k4_tarski(C,D) ) ).

fof(redefinition_k13_cat_2,axiom,
    ! [A,B,C,D] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A)
        & v2_cat_1(B)
        & l1_cat_1(B)
        & m1_subset_1(C,u2_cat_1(A))
        & m1_subset_1(D,u2_cat_1(B)) )
     => k13_cat_2(A,B,C,D) = k4_tarski(C,D) ) ).

fof(redefinition_k14_funct_3,axiom,
    ! [A,B,C,D,E] :
      ( ( ~ v1_xboole_0(B)
        & ~ v1_xboole_0(C)
        & v1_funct_1(D)
        & v1_funct_2(D,A,B)
        & m1_relset_1(D,A,B)
        & v1_funct_1(E)
        & v1_funct_2(E,A,C)
        & m1_relset_1(E,A,C) )
     => k14_funct_3(A,B,C,D,E) = k13_funct_3(D,E) ) ).

fof(redefinition_k8_funct_2,axiom,
    ! [A,B,C,D] :
      ( ( ~ v1_xboole_0(A)
        & v1_funct_1(C)
        & v1_funct_2(C,A,B)
        & m1_relset_1(C,A,B)
        & m1_subset_1(D,A) )
     => k8_funct_2(A,B,C,D) = k1_funct_1(C,D) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
    <=> m1_relset_1(C,A,B) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(t107_cat_1,axiom,
    ! [A] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A) )
     => ! [B] :
          ( ( v2_cat_1(B)
            & l1_cat_1(B) )
         => ! [C] :
              ( m2_cat_1(C,A,B)
             => ! [D] :
                  ( m1_subset_1(D,u1_cat_1(A))
                 => ! [E] :
                      ( m1_subset_1(E,u1_cat_1(B))
                     => ( k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,k10_cat_1(A,D)) = k10_cat_1(B,E)
                       => k13_cat_1(A,B,C,D) = E ) ) ) ) ) ) ).

fof(t108_cat_1,axiom,
    ! [A] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A) )
     => ! [B] :
          ( ( v2_cat_1(B)
            & l1_cat_1(B) )
         => ! [C] :
              ( m2_cat_1(C,A,B)
             => ! [D] :
                  ( m1_subset_1(D,u1_cat_1(A))
                 => k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,k10_cat_1(A,D)) = k10_cat_1(B,k13_cat_1(A,B,C,D)) ) ) ) ) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t41_cat_2,axiom,
    ! [A] :
      ( ( v2_cat_1(A)
        & l1_cat_1(A) )
     => ! [B] :
          ( ( v2_cat_1(B)
            & l1_cat_1(B) )
         => ! [C] :
              ( m1_subset_1(C,u1_cat_1(A))
             => ! [D] :
                  ( m1_subset_1(D,u1_cat_1(B))
                 => k10_cat_1(k11_cat_2(A,B),k12_cat_2(A,B,C,D)) = k13_cat_2(A,B,k10_cat_1(A,C),k10_cat_1(B,D)) ) ) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t79_funct_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ! [C] :
              ( ~ v1_xboole_0(C)
             => ! [D] :
                  ( ( v1_funct_1(D)
                    & v1_funct_2(D,A,B)
                    & m2_relset_1(D,A,B) )
                 => ! [E] :
                      ( ( v1_funct_1(E)
                        & v1_funct_2(E,A,C)
                        & m2_relset_1(E,A,C) )
                     => ! [F] :
                          ( m1_subset_1(F,A)
                         => k8_funct_2(A,k2_zfmisc_1(B,C),k14_funct_3(A,B,C,D,E),F) = k4_tarski(k8_funct_2(A,B,D,F),k8_funct_2(A,C,E,F)) ) ) ) ) ) ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------