TPTP Problem File: CAT030+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT030+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Category Theory
% Problem : Some Isomorphisms Between Functor Categories T43
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Try92] Trybulec (1992), Some Isomorphisms Between Functor Cat
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t43_isocat_2 [Urb08]
% Status : Theorem
% Rating : 0.97 v9.0.0, 0.94 v8.2.0, 0.97 v8.1.0, 0.92 v7.5.0, 0.97 v7.4.0, 0.83 v7.0.0, 0.90 v6.4.0, 0.92 v6.1.0, 1.00 v6.0.0, 0.96 v5.3.0, 1.00 v3.4.0
% Syntax : Number of formulae : 65 ( 23 unt; 0 def)
% Number of atoms : 237 ( 16 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 197 ( 25 ~; 1 |; 110 &)
% ( 2 <=>; 59 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-4 aty)
% Number of functors : 19 ( 19 usr; 1 con; 0-5 aty)
% Number of variables : 154 ( 144 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
% : Infinox says this has no finite (counter-) models.
%------------------------------------------------------------------------------
fof(t43_isocat_2,conjecture,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( ( v2_cat_1(C)
& l1_cat_1(C) )
=> ! [D] :
( m2_cat_1(D,A,B)
=> ! [E] :
( m2_cat_1(E,A,C)
=> ! [F] :
( m1_subset_1(F,u1_cat_1(A))
=> k13_cat_1(A,k11_cat_2(B,C),k10_isocat_2(A,B,C,D,E),F) = k12_cat_2(B,C,k13_cat_1(A,B,D,F),k13_cat_1(A,C,E,F)) ) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(dt_k10_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A)) )
=> m1_cat_1(k10_cat_1(A,B),A,B,B) ) ).
fof(dt_k10_isocat_2,axiom,
! [A,B,C,D,E] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& v2_cat_1(C)
& l1_cat_1(C)
& m2_cat_1(D,A,B)
& m2_cat_1(E,A,C) )
=> m2_cat_1(k10_isocat_2(A,B,C,D,E),A,k11_cat_2(B,C)) ) ).
fof(dt_k11_cat_2,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ( v2_cat_1(k11_cat_2(A,B))
& l1_cat_1(k11_cat_2(A,B)) ) ) ).
fof(dt_k12_cat_2,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m1_subset_1(C,u1_cat_1(A))
& m1_subset_1(D,u1_cat_1(B)) )
=> m1_subset_1(k12_cat_2(A,B,C,D),u1_cat_1(k11_cat_2(A,B))) ) ).
fof(dt_k13_cat_1,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m2_cat_1(C,A,B)
& m1_subset_1(D,u1_cat_1(A)) )
=> m1_subset_1(k13_cat_1(A,B,C,D),u1_cat_1(B)) ) ).
fof(dt_k13_cat_2,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m1_subset_1(C,u2_cat_1(A))
& m1_subset_1(D,u2_cat_1(B)) )
=> m1_subset_1(k13_cat_2(A,B,C,D),u2_cat_1(k11_cat_2(A,B))) ) ).
fof(dt_k13_funct_3,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k13_funct_3(A,B))
& v1_funct_1(k13_funct_3(A,B)) ) ) ).
fof(dt_k14_funct_3,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& ~ v1_xboole_0(C)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,A,C)
& m1_relset_1(E,A,C) )
=> ( v1_funct_1(k14_funct_3(A,B,C,D,E))
& v1_funct_2(k14_funct_3(A,B,C,D,E),A,k2_zfmisc_1(B,C))
& m2_relset_1(k14_funct_3(A,B,C,D,E),A,k2_zfmisc_1(B,C)) ) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k5_cat_1,axiom,
! [A,B] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A)) )
=> m1_subset_1(k5_cat_1(A,B),u2_cat_1(A)) ) ).
fof(dt_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> m1_subset_1(k8_funct_2(A,B,C,D),B) ) ).
fof(dt_l1_cat_1,axiom,
$true ).
fof(dt_m1_cat_1,axiom,
! [A,B,C] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A))
& m1_subset_1(C,u1_cat_1(A)) )
=> ! [D] :
( m1_cat_1(D,A,B,C)
=> m1_subset_1(D,u2_cat_1(A)) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ( v1_funct_1(C)
& v1_funct_2(C,u2_cat_1(A),u2_cat_1(B))
& m2_relset_1(C,u2_cat_1(A),u2_cat_1(B)) ) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ~ v1_xboole_0(u1_cat_1(A)) ) ).
fof(dt_u2_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ~ v1_xboole_0(u2_cat_1(A)) ) ).
fof(existence_l1_cat_1,axiom,
? [A] : l1_cat_1(A) ).
fof(existence_m1_cat_1,axiom,
! [A,B,C] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A))
& m1_subset_1(C,u1_cat_1(A)) )
=> ? [D] : m1_cat_1(D,A,B,C) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ? [C] : m2_cat_1(C,A,B) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_tarski(A)) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(redefinition_k10_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A)) )
=> k10_cat_1(A,B) = k5_cat_1(A,B) ) ).
fof(redefinition_k10_isocat_2,axiom,
! [A,B,C,D,E] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& v2_cat_1(C)
& l1_cat_1(C)
& m2_cat_1(D,A,B)
& m2_cat_1(E,A,C) )
=> k10_isocat_2(A,B,C,D,E) = k13_funct_3(D,E) ) ).
fof(redefinition_k12_cat_2,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m1_subset_1(C,u1_cat_1(A))
& m1_subset_1(D,u1_cat_1(B)) )
=> k12_cat_2(A,B,C,D) = k4_tarski(C,D) ) ).
fof(redefinition_k13_cat_2,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m1_subset_1(C,u2_cat_1(A))
& m1_subset_1(D,u2_cat_1(B)) )
=> k13_cat_2(A,B,C,D) = k4_tarski(C,D) ) ).
fof(redefinition_k14_funct_3,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& ~ v1_xboole_0(C)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,A,C)
& m1_relset_1(E,A,C) )
=> k14_funct_3(A,B,C,D,E) = k13_funct_3(D,E) ) ).
fof(redefinition_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> k8_funct_2(A,B,C,D) = k1_funct_1(C,D) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t107_cat_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> ! [E] :
( m1_subset_1(E,u1_cat_1(B))
=> ( k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,k10_cat_1(A,D)) = k10_cat_1(B,E)
=> k13_cat_1(A,B,C,D) = E ) ) ) ) ) ) ).
fof(t108_cat_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,k10_cat_1(A,D)) = k10_cat_1(B,k13_cat_1(A,B,C,D)) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t41_cat_2,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m1_subset_1(C,u1_cat_1(A))
=> ! [D] :
( m1_subset_1(D,u1_cat_1(B))
=> k10_cat_1(k11_cat_2(A,B),k12_cat_2(A,B,C,D)) = k13_cat_2(A,B,k10_cat_1(A,C),k10_cat_1(B,D)) ) ) ) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t79_funct_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( ~ v1_xboole_0(C)
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,A,B)
& m2_relset_1(D,A,B) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,A,C)
& m2_relset_1(E,A,C) )
=> ! [F] :
( m1_subset_1(F,A)
=> k8_funct_2(A,k2_zfmisc_1(B,C),k14_funct_3(A,B,C,D,E),F) = k4_tarski(k8_funct_2(A,B,D,F),k8_funct_2(A,C,E,F)) ) ) ) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------