TPTP Problem File: BOO109+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO109+1 : TPTP v9.0.0. Released v3.5.0.
% Domain : Boolean Algebra
% Problem : Josef Urban's problem using the Wajsberg axiom
% Version : Especial.
% English :
% Refs : [Wol02] Wolfram (2002), A New Kind of Science
% : [Urb08] Urban (2008), Email to G. Sutcliffe
% Source : [Urb08]
% Names :
% Status : Theorem
% Rating : 0.80 v9.0.0, 0.69 v8.2.0, 0.73 v8.1.0, 0.71 v7.5.0, 0.81 v7.4.0, 0.75 v7.3.0, 0.57 v7.2.0, 0.67 v7.1.0, 0.50 v7.0.0, 0.79 v6.4.0, 0.86 v6.3.0, 0.85 v6.2.0, 0.73 v6.1.0, 0.88 v6.0.0, 0.75 v5.5.0, 0.88 v5.4.0, 0.91 v5.2.0, 0.86 v5.0.0, 0.90 v4.1.0, 0.94 v4.0.1, 0.95 v3.7.0, 0.86 v3.5.0
% Syntax : Number of formulae : 3 ( 2 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 1 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 9 ( 9 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(wajsbergs_axiom,axiom,
! [A,B,C,D] : p(nand(nand(A,nand(B,C)),nand(nand(nand(D,C),nand(nand(A,D),nand(A,D))),nand(A,nand(A,B))))) ).
fof(modus_ponens_for_nand,axiom,
! [P,Q,R] :
( ( p(nand(P,nand(Q,R)))
& p(P) )
=> p(R) ) ).
fof(tautology,conjecture,
! [A,B] : p(nand(nand(A,nand(B,B)),nand(nand(nand(B,B),nand(nand(A,A),nand(A,A))),nand(nand(B,B),nand(nand(A,A),nand(A,A)))))) ).
%--------------------------------------------------------------------------