TPTP Problem File: BOO023-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : BOO023-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Boolean Algebra
% Problem : Half of Padmanabhan's 6-basis with Pixley, part 1.
% Version : [MP96] (equality) axioms : Especial.
% English : Part 1 (of 3) of the proof that half of Padmanaban's self-dual
% independent 6-basis for Boolean Algebra, together with a Pixley
% polynomial, is a basis for Boolean algebra.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : DUAL-BA-2-a [MP96]
% Status : Unsatisfiable
% Rating : 0.32 v8.2.0, 0.46 v8.1.0, 0.45 v7.5.0, 0.50 v7.4.0, 0.52 v7.3.0, 0.47 v7.1.0, 0.39 v7.0.0, 0.37 v6.4.0, 0.42 v6.3.0, 0.47 v6.2.0, 0.50 v6.1.0, 0.62 v6.0.0, 0.71 v5.5.0, 0.63 v5.4.0, 0.53 v5.3.0, 0.50 v5.1.0, 0.60 v5.0.0, 0.57 v4.1.0, 0.45 v4.0.1, 0.43 v4.0.0, 0.38 v3.7.0, 0.44 v3.4.0, 0.50 v3.1.0, 0.33 v2.7.0, 0.36 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1
% Syntax : Number of clauses : 8 ( 8 unt; 0 nHn; 1 RR)
% Number of literals : 8 ( 8 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-3 aty)
% Number of variables : 15 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Half of Padmanabhan's self-dual independent 6-basis for Boolean Algebra:
cnf(multiply_add,axiom,
multiply(add(X,Y),Y) = Y ).
cnf(multiply_add_property,axiom,
multiply(X,add(Y,Z)) = add(multiply(Y,X),multiply(Z,X)) ).
cnf(additive_inverse,axiom,
add(X,inverse(X)) = n1 ).
%----pixley(X,Y,Z) is a Pixley polynomial:
cnf(pixley_defn,axiom,
pixley(X,Y,Z) = add(multiply(X,inverse(Y)),add(multiply(X,Z),multiply(inverse(Y),Z))) ).
cnf(pixley1,axiom,
pixley(X,X,Y) = Y ).
cnf(pixley2,axiom,
pixley(X,Y,Y) = X ).
cnf(pixley3,axiom,
pixley(X,Y,X) = X ).
%----Denial of conclusion:
cnf(prove_add_multiply_property,negated_conjecture,
add(a,multiply(b,c)) != multiply(add(a,b),add(a,c)) ).
%--------------------------------------------------------------------------