TPTP Problem File: ARI722_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI722_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : If floor(X) = X, then X is an integer
% Version : Especial.
% English :
% Refs : [Wal14] Waldmann (2014), Email to Geoff Sutcliffe
% Source : [Wal14]
% Names :
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.38 v7.5.0, 0.40 v7.4.0, 0.50 v7.3.0, 0.67 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0
% Syntax : Number of formulae : 1 ( 0 unt; 0 typ; 0 def)
% Number of atoms : 2 ( 1 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 3 ( 1 atm; 1 fun; 0 num; 1 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 0 usr; 0 con; 1-1 aty)
% Number of variables : 1 ( 1 !; 0 ?; 1 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(prove,conjecture,
! [X: $real] :
( ( X = $floor(X) )
=> $is_int(X) ) ).
%------------------------------------------------------------------------------