TPTP Problem File: ARI693_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI693_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Solve simple system of linear equations
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : simplify18.pri [BHS07]
% : poly_simplify18.p [Rue14]
% Status : Theorem
% Rating : 0.88 v8.1.0, 0.50 v7.5.0, 0.70 v7.4.0, 0.75 v7.3.0, 0.67 v7.0.0, 0.86 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 8 ( 4 unt; 4 typ; 0 def)
% Number of atoms : 4 ( 4 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number arithmetic : 31 ( 0 atm; 15 fun; 16 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 19 ( 4 usr; 16 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(x_type,type,
x: $int ).
tff(a_type,type,
a: $int ).
tff(z_type,type,
z: $int ).
tff(y_type,type,
y: $int ).
tff(eq1,axiom,
$sum($product(3,x),$product(5,a)) = 1 ).
tff(eq2,axiom,
$sum($product(7,z),$product(-1,$product(17,x))) = 4 ).
tff(eq3,axiom,
$sum($sum($product(2,y),$product(7,x)),$product(-1,$product(-1,34))) = 0 ).
tff(conj,conjecture,
$remainder_t($sum(z,116),170) = 0 ).
%------------------------------------------------------------------------------