TPTP Problem File: ARI683_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI683_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Solve system of nonlinear inequalities
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : quadraticInEq9.pri [BHS07]
% : quadraticInEq9.p [Rue14]
% Status : Theorem
% Rating : 0.60 v9.0.0, 0.50 v8.2.0, 0.67 v8.1.0, 0.50 v7.5.0, 0.60 v7.4.0, 0.33 v7.3.0, 0.50 v7.0.0, 0.67 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 16 ( 7 unt; 9 typ; 0 def)
% Number of atoms : 7 ( 0 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number arithmetic : 35 ( 7 atm; 23 fun; 5 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 12 ( 9 usr; 10 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(b_type,type,
b: $int ).
tff(c_type,type,
c: $int ).
tff(g_type,type,
g: $int ).
tff(h_type,type,
h: $int ).
tff(a_type,type,
a: $int ).
tff(f_type,type,
f: $int ).
tff(i_type,type,
i: $int ).
tff(d_type,type,
d: $int ).
tff(e_type,type,
e: $int ).
tff(conj,axiom,
$lesseq($sum($product(a,f),$product(-1,$product(a,h))),$sum($sum(b,$product(c,g)),$product(-1,$product(c,h)))) ).
tff(conj_001,axiom,
$lesseq(g,f) ).
tff(conj_002,axiom,
$less(h,g) ).
tff(conj_003,axiom,
$less(i,h) ).
tff(conj_004,axiom,
$lesseq(a,d) ).
tff(conj_005,axiom,
$less(e,a) ).
tff(conj_006,conjecture,
$lesseq($sum($product(e,f),$product(-1,$product(e,i))),$sum($sum($sum($sum(b,$product(c,g)),$product(-1,$product(c,h))),$product(d,h)),$product(-1,$product(d,i)))) ).
%------------------------------------------------------------------------------