TPTP Problem File: ARI679_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI679_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Prove equivalence of nonlinear inequalities
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : quadraticInEq4.pri [BHS07]
% : quadraticInEq4.p [Rue14]
% Status : Theorem
% Rating : 0.40 v9.0.0, 0.25 v8.2.0, 0.33 v7.5.0, 0.20 v7.4.0, 0.50 v7.3.0, 0.62 v7.1.0, 0.67 v7.0.0, 0.83 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 5 ( 2 unt; 2 typ; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 1 ( 0 ~; 0 |; 0 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 17 ( 4 atm; 6 fun; 7 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 2 usr; 4 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(d_type,type,
d: $int ).
tff(c_type,type,
c: $int ).
tff(conj,axiom,
$lesseq(3,d) ).
tff(conj_001,axiom,
$lesseq(2,c) ).
tff(conj_002,conjecture,
( $lesseq($product(2,3),$product(c,d))
<=> $lesseq($product(2,$difference(d,3)),$product(c,$difference(d,3))) ) ).
%------------------------------------------------------------------------------