TPTP Problem File: ARI668_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI668_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : 11*a + 7*b = 1 and c >= a imply a*c <= 0 | a*c >= 4
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : quadraticInEq14.pri [BHS07]
% : quadraticInEq14.p [Rue14]
% Status : Theorem
% Rating : 0.50 v9.0.0, 0.38 v8.2.0, 0.50 v7.0.0, 0.71 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 6 ( 2 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 1 equ)
% Maximal formula atoms : 2 ( 0 avg)
% Number of connectives : 1 ( 0 ~; 1 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 13 ( 3 atm; 5 fun; 5 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 3 usr; 8 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_EQU_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(b_type,type,
b: $int ).
tff(c_type,type,
c: $int ).
tff(conj,axiom,
$sum($product(11,a),$product(7,b)) = 1 ).
tff(conj_001,axiom,
$lesseq(a,c) ).
tff(conj_002,conjecture,
( $lesseq(4,$product(a,c))
| $greatereq(0,$product(a,c)) ) ).
%------------------------------------------------------------------------------