TPTP Problem File: ARI655_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI655_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : a >= b, c >= d imply (a-b)*(c-d) >= 0
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : linApprox.pri [BHS07]
% : linApprox.p [Rue14]
% Status : Theorem
% Rating : 0.40 v9.0.0, 0.50 v8.2.0, 0.33 v7.5.0, 0.40 v7.4.0, 0.33 v7.3.0, 0.38 v7.1.0, 0.50 v7.0.0, 0.67 v6.4.0, 1.00 v6.3.0
% Syntax : Number of formulae : 7 ( 3 unt; 4 typ; 0 def)
% Number of atoms : 3 ( 0 equ)
% Maximal formula atoms : 1 ( 0 avg)
% Number of connectives : 0 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 7 ( 3 atm; 3 fun; 1 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 4 usr; 5 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(b_type,type,
b: $int ).
tff(c_type,type,
c: $int ).
tff(d_type,type,
d: $int ).
tff(conj,axiom,
$lesseq(b,a) ).
tff(conj_001,axiom,
$lesseq(d,c) ).
tff(conj_002,conjecture,
$lesseq(0,$product($difference(a,b),$difference(c,d))) ).
%------------------------------------------------------------------------------