TPTP Problem File: ARI645_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : ARI645_1 : TPTP v9.0.0. Released v6.3.0.
% Domain : Arithmetic
% Problem : Prove that d >= 0, b >= a, a > 0 imply d / b <= d / a
% Version : Especial.
% English :
% Refs : [BHS07] Beckert et al. (2007), Verification of Object-Oriented
% : [Rue14] Ruemmer (2014), Email to Geoff Sutcliffe
% Source : [Rue14]
% Names : inequations0.pri [BHS07]
% : division3.p [Rue14]
% Status : Theorem
% Rating : 0.60 v9.0.0, 0.50 v8.2.0, 0.67 v7.5.0, 0.80 v7.4.0, 0.83 v7.3.0, 0.75 v7.1.0, 0.83 v7.0.0, 1.00 v6.3.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 4 ( 0 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 2 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number arithmetic : 8 ( 4 atm; 2 fun; 2 num; 0 var)
% Number of types : 1 ( 0 usr; 1 ari)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 3 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 3 usr; 4 con; 0-2 aty)
% Number of variables : 0 ( 0 !; 0 ?; 0 :)
% SPC : TF0_THM_NEQ_ARI
% Comments : KeY arithmetic regression test, http://www.key-project.org
%------------------------------------------------------------------------------
tff(a_type,type,
a: $int ).
tff(a_type_001,type,
b: $int ).
tff(a_type_002,type,
d: $int ).
tff(conj,conjecture,
( ( $greatereq(d,0)
& $greatereq(b,a)
& $greater(a,0) )
=> $lesseq($quotient_e(d,b),$quotient_e(d,a)) ) ).
%------------------------------------------------------------------------------